Nonpositively curved 2–complexes with isolated flats
Geometry & topology, Tome 8 (2004) no. 1, pp. 205-275.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce the class of nonpositively curved 2–complexes with the Isolated Flats Property. These 2–complexes are, in a sense, hyperbolic relative to their flats. More precisely, we show that several important properties of Gromov-hyperbolic spaces hold “relative to flats” in nonpositively curved 2–complexes with the Isolated Flats Property. We introduce the Relatively Thin Triangle Property, which states roughly that the fat part of a geodesic triangle lies near a single flat. We also introduce the Relative Fellow Traveller Property, which states that pairs of quasigeodesics with common endpoints fellow travel relative to flats, in a suitable sense. The main result of this paper states that in the setting of CAT(0) 2–complexes, the Isolated Flats Property is equivalent to the Relatively Thin Triangle Property and is also equivalent to the Relative Fellow Traveller Property.

DOI : 10.2140/gt.2004.8.205
Keywords: word hyperbolic, nonpositive curvature, thin triangles, quasigeodesics, isolated flats

Hruska, G Christopher 1

1 Department of Mathematics, University of Chicago, 5734 South University Ave, Chicago, Illinois 60637, USA
@article{GT_2004_8_1_a4,
     author = {Hruska, G Christopher},
     title = {Nonpositively curved 2{\textendash}complexes with isolated flats},
     journal = {Geometry & topology},
     pages = {205--275},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     doi = {10.2140/gt.2004.8.205},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.205/}
}
TY  - JOUR
AU  - Hruska, G Christopher
TI  - Nonpositively curved 2–complexes with isolated flats
JO  - Geometry & topology
PY  - 2004
SP  - 205
EP  - 275
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.205/
DO  - 10.2140/gt.2004.8.205
ID  - GT_2004_8_1_a4
ER  - 
%0 Journal Article
%A Hruska, G Christopher
%T Nonpositively curved 2–complexes with isolated flats
%J Geometry & topology
%D 2004
%P 205-275
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.205/
%R 10.2140/gt.2004.8.205
%F GT_2004_8_1_a4
Hruska, G Christopher. Nonpositively curved 2–complexes with isolated flats. Geometry & topology, Tome 8 (2004) no. 1, pp. 205-275. doi : 10.2140/gt.2004.8.205. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.205/

[1] I Aitchison, Canonical flat structures on 3–manifolds, preprint

[2] J M Alonso, T Brady, D Cooper, V Ferlini, M Lustig, M Mihalik, H Short, Notes on word hyperbolic groups, from: "Group theory from a geometrical viewpoint (Trieste, 1990)" (editor H Short), World Sci. Publ., River Edge, NJ (1991) 3

[3] W Ballmann, Singular spaces of nonpositive curvature, from: "Sur les groupes hyperboliques d'après Mikhael Gromov (Bern, 1988)", Progr. Math. 83, Birkhäuser (1990) 189

[4] W Ballmann, M Brin, Polygonal complexes and combinatorial group theory, Geom. Dedicata 50 (1994) 165

[5] V Bangert, V Schroeder, Existence of flat tori in analytic manifolds of nonpositive curvature, Ann. Sci. École Norm. Sup. $(4)$ 24 (1991) 605

[6] N Benakli, Polygonal complexes I: Combinatorial and geometric properties, J. Pure Appl. Algebra 97 (1994) 247

[7] B H Bowditch, Relatively hyperbolic groups, University of Southampton preprint (1999)

[8] M R Bridson, Geodesics and curvature in metric simplicial complexes, from: "Group theory from a geometrical viewpoint (Trieste, 1990)" (editors É Ghys, A Haefliger, A Verjovsky), World Sci. Publ., River Edge, NJ (1991) 373

[9] M R Bridson, On the existence of flat planes in spaces of nonpositive curvature, Proc. Amer. Math. Soc. 123 (1995) 223

[10] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften 319, Springer (1999)

[11] C B Croke, B Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000) 549

[12] C B Croke, B Kleiner, The geodesic flow of a nonpositively curved graph manifold, Geom. Funct. Anal. 12 (2002) 479

[13] M Dehn, Papers on group theory and topology, Springer (1987)

[14] P Eberlein, Geodesic flows on negatively curved manifolds II, Trans. Amer. Math. Soc. 178 (1973) 57

[15] V A Efremovič, E S Tihomirova, The continuation of an equimorphism to infinity, Dokl. Akad. Nauk SSSR 152 (1963) 1051

[16] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett Publishers (1992)

[17] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810

[18] S M Gersten, Reducible diagrams and equations over groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 15

[19] S M Gersten, H B Short, Small cancellation theory and automatic groups, Invent. Math. 102 (1990) 305

[20] S M Gersten, H Short, Small cancellation theory and automatic groups II, Invent. Math. 105 (1991) 641

[21] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[22] F Haglund, Les polyèdres de Gromov, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 603

[23] J Heber, Hyperbolische geodatische Raume, Diplomarbeit, Universität Bonn (1987)

[24] G C Hruska, Geometric invariants of spaces with isolated flats, Topology 44 (2005) 441

[25] G C Hruska, On the relative hyperbolicity of nonpositively curved groups with isolated flats, in preparation

[26] M Kapovich, B Leeb, On asymptotic cones and quasi-isometry classes of fundamental groups of 3–manifolds, Geom. Funct. Anal. 5 (1995) 582

[27] J Kari, P Papasoglu, Deterministic aperiodic tile sets, Geom. Funct. Anal. 9 (1999) 353

[28] U Lang, Quasigeodesics outside horoballs, Geom. Dedicata 63 (1996) 205

[29] R C Lyndon, On Dehn's algorithm, Math. Ann. 166 (1966) 208

[30] R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer (1977)

[31] H A Masur, Y N Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999) 103

[32] J P Mccammond, D T Wise, Fans and ladders in small cancellation theory, Proc. London Math. Soc. $(3)$ 84 (2002) 599

[33] H M Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc. 26 (1924) 25

[34] G Moussong, Hyperbolic Coxeter groups, PhD thesis, Ohio State University (1988)

[35] G A Niblo, L D Reeves, The geometry of cube complexes and the complexity of their fundamental groups, Topology 37 (1998) 621

[36] P Papasoglu, Strongly geodesically automatic groups are hyperbolic, Invent. Math. 121 (1995) 323

[37] S J Pride, Star-complexes, and the dependence problems for hyperbolic complexes, Glasgow Math. J. 30 (1988) 155

[38] D Y Rebbechi, Algorithmic properties of relatively hyperbolic groups, PhD thesis, Rutgers University (2001)

[39] W Rudin, Real and complex analysis, McGraw-Hill Book Co. (1987)

[40] Z Sela, Diophantine geometry over groups: A list of research problems

[41] H Short, Quasiconvexity and a theorem of Howson's, from: "Group theory from a geometrical viewpoint (Trieste, 1990)", World Sci. Publ., River Edge, NJ (1991) 168

[42] P Tukia, Convergence groups and Gromov's metric hyperbolic spaces, New Zealand J. Math. 23 (1994) 157

[43] E R V Kampen, On Some Lemmas in the Theory of Groups, Amer. J. Math. 55 (1933) 268

[44] C M Weinbaum, The word and conjugacy problems for the knot group of any tame, prime, alternating knot, Proc. Amer. Math. Soc. 30 (1971) 22

[45] J M Wilson, A CAT(0) group with uncountably many distinct boundaries, J. Group Theory 8 (2005) 229

[46] D T Wise, Non-positively curved squared complexes, aperiodic tilings, and non-residually finite groups, PhD thesis, Princeton University (1996)

[47] D T Wise, Subgroup separability of the figure 8 knot group, Topology 45 (2006) 421

Cité par Sources :