Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We give a simple proof of the finite presentation of Sela’s limit groups by using free actions on –trees. We first prove that Sela’s limit groups do have a free action on an –tree. We then prove that a finitely generated group having a free action on an –tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic groups. As a corollary, such a group is finitely presented, has a finite classifying space, its abelian subgroups are finitely generated and contains only finitely many conjugacy classes of non-cyclic maximal abelian subgroups.
Guirardel, Vincent 1
@article{GT_2004_8_3_a12, author = {Guirardel, Vincent}, title = {Limit groups and groups acting freely on {\ensuremath{\mathbb{R}}n{\textendash}trees}}, journal = {Geometry & topology}, pages = {1427--1470}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2004}, doi = {10.2140/gt.2004.8.1427}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1427/} }
Guirardel, Vincent. Limit groups and groups acting freely on ℝn–trees. Geometry & topology, Tome 8 (2004) no. 3, pp. 1427-1470. doi : 10.2140/gt.2004.8.1427. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1427/
[1] Group actions on non–Archimedean trees, from: "Arboreal group theory (Berkeley, CA, 1988)", Math. Sci. Res. Inst. Publ. 19, Springer (1991) 69
,[2] Residually free groups, Proc. London Math. Soc. $(3)$ 17 (1967) 402
,[3] On generalised free products, Math. Z. 78 (1962) 423
,[4] Stable actions of groups on real trees, Invent. Math. 121 (1995) 287
, ,[5] Éléments de mathématique. Fasc XXX: Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles 1308, Hermann (1964) 207
,[6] Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)
,[7] Limit groups as limits of free groups, Israel J. Math. 146 (2005) 1
, ,[8] Nontrivial group actions on $\Lambda$–trees, Bull. London Math. Soc. 24 (1992) 277
,[9] Harrison's theorem for $\Lambda$–trees, Quart. J. Math. Oxford Ser. $(2)$ 45 (1994) 1
,[10] Introduction to $\Lambda$–trees, from: "Semigroups, formal languages and groups (York, 1993)", NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 466, Kluwer Acad. Publ. (1995) 255
,[11] Introduction to $\Lambda$–trees, World Scientific Publishing Co. (2001)
,[12] Combination of convergence groups, Geom. Topol. 7 (2003) 933
,[13] Pseudogroups of isometries of $\mathbb{R}$ and Rips' theorem on free actions on $\mathbb{R}$–trees, Israel J. Math. 87 (1994) 403
, , ,[14] Every “universally free” group is tree-free, from: "Group theory (Granville, OH, 1992)", World Sci. Publ., River Edge, NJ (1993) 149
, ,[15] Does Lyndon's length function imply the universal theory of free groups?, from: "The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992)", Contemp. Math. 169, Amer. Math. Soc. (1994) 277
, ,[16] Group actions on $\Lambda$–trees, PhD thesis, Hebrew University, Jerusalem (1998)
,[17] Rips theory for actions of finitely generated groups on $\mathbb{R}$–trees, in preparation
,[18] Real length functions in groups, Trans. Amer. Math. Soc. 174 (1972) 77
,[19] A note on a theorem of Chiswell, Proc. Amer. Math. Soc. 123 (1995) 2629
, ,[20] Irreducible affine varieties over a free group I: Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472
, ,[21] Irreducible affine varieties over a free group II: Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998) 517
, ,[22] Value groups, residue fields, and bad places of rational function fields, Trans. Amer. Math. Soc. 356 (2004) 4559
,[23] The equation $a^{2}b^{2}=c^{2}$ in free groups, Michigan Math. J 6 (1959) 89
,[24] Sur la théorie élémentaire des groupes libres (d'après Sela), Astérisque (2004) 363
,[25] Finitely generated subgroups of the free $\mathbb{Z}[t]$–group on two generators, from: "Model theory of groups and automorphism groups (Blaubeuren, 1995)", London Math. Soc. Lecture Note Ser. 244, Cambridge Univ. Press (1997) 166
,[26] $\exists$–free groups, Sibirsk. Mat. Zh. 30 (1989) 193
,[27] $\exists$–free groups as groups with a length function, Ukraïn. Mat. Zh. 44 (1992) 813
,[28] Acylindrical accessibility for groups, Invent. Math. 129 (1997) 527
,[29] A list of research problems
,[30] Diophantine geometry over groups I: Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31
,[31] On free actions on $\Lambda$–trees, Math. Proc. Cambridge Philos. Soc. 113 (1993) 535
, ,[32] Commutative algebra Vol II, Springer (1975)
, ,Cité par Sources :