Limit groups and groups acting freely on ℝn–trees
Geometry & topology, Tome 8 (2004) no. 3, pp. 1427-1470.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a simple proof of the finite presentation of Sela’s limit groups by using free actions on n–trees. We first prove that Sela’s limit groups do have a free action on an n–tree. We then prove that a finitely generated group having a free action on an n–tree can be obtained from free abelian groups and surface groups by a finite sequence of free products and amalgamations over cyclic groups. As a corollary, such a group is finitely presented, has a finite classifying space, its abelian subgroups are finitely generated and contains only finitely many conjugacy classes of non-cyclic maximal abelian subgroups.

DOI : 10.2140/gt.2004.8.1427
Keywords: $\mathbb{R}^n$–tree, limit group, finite presentation

Guirardel, Vincent 1

1 Laboratoire E. Picard, UMR 5580, Bât 1R2, Université Paul Sabatier, 118 rte de Narbonne, 31062 Toulouse cedex 4, France
@article{GT_2004_8_3_a12,
     author = {Guirardel, Vincent},
     title = {Limit groups and groups acting freely on {\ensuremath{\mathbb{R}}n{\textendash}trees}},
     journal = {Geometry & topology},
     pages = {1427--1470},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1427},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1427/}
}
TY  - JOUR
AU  - Guirardel, Vincent
TI  - Limit groups and groups acting freely on ℝn–trees
JO  - Geometry & topology
PY  - 2004
SP  - 1427
EP  - 1470
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1427/
DO  - 10.2140/gt.2004.8.1427
ID  - GT_2004_8_3_a12
ER  - 
%0 Journal Article
%A Guirardel, Vincent
%T Limit groups and groups acting freely on ℝn–trees
%J Geometry & topology
%D 2004
%P 1427-1470
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1427/
%R 10.2140/gt.2004.8.1427
%F GT_2004_8_3_a12
Guirardel, Vincent. Limit groups and groups acting freely on ℝn–trees. Geometry & topology, Tome 8 (2004) no. 3, pp. 1427-1470. doi : 10.2140/gt.2004.8.1427. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1427/

[1] H Bass, Group actions on non–Archimedean trees, from: "Arboreal group theory (Berkeley, CA, 1988)", Math. Sci. Res. Inst. Publ. 19, Springer (1991) 69

[2] B Baumslag, Residually free groups, Proc. London Math. Soc. $(3)$ 17 (1967) 402

[3] G Baumslag, On generalised free products, Math. Z. 78 (1962) 423

[4] M Bestvina, M Feighn, Stable actions of groups on real trees, Invent. Math. 121 (1995) 287

[5] N Bourbaki, Éléments de mathématique. Fasc XXX: Algèbre commutative. Chapitre 5: Entiers. Chapitre 6: Valuations, Actualités Scientifiques et Industrielles 1308, Hermann (1964) 207

[6] K S Brown, Cohomology of groups, Graduate Texts in Mathematics 87, Springer (1982)

[7] C Champetier, V Guirardel, Limit groups as limits of free groups, Israel J. Math. 146 (2005) 1

[8] I M Chiswell, Nontrivial group actions on $\Lambda$–trees, Bull. London Math. Soc. 24 (1992) 277

[9] I M Chiswell, Harrison's theorem for $\Lambda$–trees, Quart. J. Math. Oxford Ser. $(2)$ 45 (1994) 1

[10] I M Chiswell, Introduction to $\Lambda$–trees, from: "Semigroups, formal languages and groups (York, 1993)", NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 466, Kluwer Acad. Publ. (1995) 255

[11] I Chiswell, Introduction to $\Lambda$–trees, World Scientific Publishing Co. (2001)

[12] F Dahmani, Combination of convergence groups, Geom. Topol. 7 (2003) 933

[13] D Gaboriau, G Levitt, F Paulin, Pseudogroups of isometries of $\mathbb{R}$ and Rips' theorem on free actions on $\mathbb{R}$–trees, Israel J. Math. 87 (1994) 403

[14] A M Gaglione, D Spellman, Every “universally free” group is tree-free, from: "Group theory (Granville, OH, 1992)", World Sci. Publ., River Edge, NJ (1993) 149

[15] A M Gaglione, D Spellman, Does Lyndon's length function imply the universal theory of free groups?, from: "The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992)", Contemp. Math. 169, Amer. Math. Soc. (1994) 277

[16] S Gross, Group actions on $\Lambda$–trees, PhD thesis, Hebrew University, Jerusalem (1998)

[17] V Guirardel, Rips theory for actions of finitely generated groups on $\mathbb{R}$–trees, in preparation

[18] N Harrison, Real length functions in groups, Trans. Amer. Math. Soc. 174 (1972) 77

[19] S Jackson, L Q Zamboni, A note on a theorem of Chiswell, Proc. Amer. Math. Soc. 123 (1995) 2629

[20] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group I: Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472

[21] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group II: Systems in triangular quasi-quadratic form and description of residually free groups, J. Algebra 200 (1998) 517

[22] F V Kuhlmann, Value groups, residue fields, and bad places of rational function fields, Trans. Amer. Math. Soc. 356 (2004) 4559

[23] R C Lyndon, The equation $a^{2}b^{2}=c^{2}$ in free groups, Michigan Math. J 6 (1959) 89

[24] F Paulin, Sur la théorie élémentaire des groupes libres (d'après Sela), Astérisque (2004) 363

[25] P H Pfander, Finitely generated subgroups of the free $\mathbb{Z}[t]$–group on two generators, from: "Model theory of groups and automorphism groups (Blaubeuren, 1995)", London Math. Soc. Lecture Note Ser. 244, Cambridge Univ. Press (1997) 166

[26] V N Remeslennikov, $\exists$–free groups, Sibirsk. Mat. Zh. 30 (1989) 193

[27] V N Remeslennikov, $\exists$–free groups as groups with a length function, Ukraïn. Mat. Zh. 44 (1992) 813

[28] Z Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997) 527

[29] Z Sela, A list of research problems

[30] Z Sela, Diophantine geometry over groups I: Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31

[31] M Urbański, L Zamboni, On free actions on $\Lambda$–trees, Math. Proc. Cambridge Philos. Soc. 113 (1993) 535

[32] O Zariski, P Samuel, Commutative algebra Vol II, Springer (1975)

Cité par Sources :