Noncommutative localisation in algebraic K–theory I
Geometry & topology, Tome 8 (2004) no. 3, pp. 1385-1425.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This article establishes, for an appropriate localisation of associative rings, a long exact sequence in algebraic K–theory. The main result goes as follows. Let A be an associative ring and let AB be the localisation with respect to a set σ of maps between finitely generated projective A–modules. Suppose that TornA(B,B) vanishes for all n > 0. View each map in σ as a complex (of length 1, meaning one non-zero map between two non-zero objects) in the category of perfect complexes Dperf(A). Denote by σ the thick subcategory generated by these complexes. Then the canonical functor Dperf(A)Dperf(B) induces (up to direct factors) an equivalence Dperf(A)σDperf(B). As a consequence, one obtains a homotopy fibre sequence

(up to surjectivity of K0(A)K0(B)) of Waldhausen K–theory spectra.

In subsequent articles [??] we will present the K– and L–theoretic consequences of the main theorem in a form more suitable for the applications to surgery. For example if, in addition to the vanishing of TornA(B,B), we also assume that every map in σ is a monomorphism, then there is a description of the homotopy fiber of the map K(A)K(B) as the Quillen K–theory of a suitable exact category of torsion modules.

DOI : 10.2140/gt.2004.8.1385
Keywords: noncommutative localisation, $K$–theory, triangulated category

Neeman, Amnon 1 ; Ranicki, Andrew 2

1 Centre for Mathematics and its Applications, The Australian National University, Canberra, ACT 0200, Australia
2 School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland, United Kingdom
@article{GT_2004_8_3_a11,
     author = {Neeman, Amnon and Ranicki, Andrew},
     title = {Noncommutative localisation in algebraic {K{\textendash}theory} {I}},
     journal = {Geometry & topology},
     pages = {1385--1425},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1385},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1385/}
}
TY  - JOUR
AU  - Neeman, Amnon
AU  - Ranicki, Andrew
TI  - Noncommutative localisation in algebraic K–theory I
JO  - Geometry & topology
PY  - 2004
SP  - 1385
EP  - 1425
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1385/
DO  - 10.2140/gt.2004.8.1385
ID  - GT_2004_8_3_a11
ER  - 
%0 Journal Article
%A Neeman, Amnon
%A Ranicki, Andrew
%T Noncommutative localisation in algebraic K–theory I
%J Geometry & topology
%D 2004
%P 1385-1425
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1385/
%R 10.2140/gt.2004.8.1385
%F GT_2004_8_3_a11
Neeman, Amnon; Ranicki, Andrew. Noncommutative localisation in algebraic K–theory I. Geometry & topology, Tome 8 (2004) no. 3, pp. 1385-1425. doi : 10.2140/gt.2004.8.1385. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1385/

[1] H Bass, Algebraic $K$–theory, W. A. Benjamin, New York-Amsterdam (1968)

[2] A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, from: "Analysis and topology on singular spaces I (Luminy, 1981)", Astérisque 100, Soc. Math. France (1982) 5

[3] G M Bergman, W Dicks, Universal derivations and universal ring constructions, Pacific J. Math. 79 (1978) 293

[4] M Bökstedt, A Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993) 209

[5] A K Bousfield, The localization of spaces with respect to homology, Topology 14 (1975) 133

[6] A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257

[7] P M Cohn, Free rings and their relations, London Mathematical Society Monographs 2, Academic Press (1971)

[8] W Dicks, Mayer–Vietoris persentations over colimits of rings, Proc. London Math. Soc. $(3)$ 34 (1977) 557

[9] M Farber, A Ranicki, The Morse–Novikov theory of circle-valued functions and noncommutative localization, Tr. Mat. Inst. Steklova 225 (1999) 381

[10] M Farber, P Vogel, The Cohn localization of the free group ring, Math. Proc. Cambridge Philos. Soc. 111 (1992) 433

[11] W Geigle, H Lenzing, Perpendicular categories with applications to representations and sheaves, J. Algebra 144 (1991) 273

[12] H Gillet, Riemann–Roch theorems for higher algebraic $K$–theory, Adv. in Math. 40 (1981) 203

[13] D Grayson, Higher algebraic $K$–theory II (after Daniel Quillen), from: "Algebraic $K$–theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976)", Springer (1976)

[14] D R Grayson, $K$–theory and localization of noncommutative rings, J. Pure Appl. Algebra 18 (1980) 125

[15] D R Grayson, Exact sequences in algebraic $K$–theory, Illinois J. Math. 31 (1987) 598

[16] B Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. $(4)$ 27 (1994) 63

[17] B Keller, A remark on the generalized smashing conjecture, Manuscripta Math. 84 (1994) 193

[18] H Krause, Smashing subcategories and the telescope conjecture—an algebraic approach, Invent. Math. 139 (2000) 99

[19] H Krause, Cohomological quotients and smashing localizations, Amer. J. Math. 127 (2005) 1191

[20] M Levine, Localization on singular varieties, Invent. Math. 91 (1988) 423

[21] A Neeman, The chromatic tower for $D(R)$, Topology 31 (1992) 519

[22] A Neeman, The connection between the $K$–theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. $(4)$ 25 (1992) 547

[23] A Neeman, Triangulated categories, Annals of Mathematics Studies 148, Princeton University Press (2001)

[24] A Neeman, Non-compactly generated categories, Topology 37 (1998) 981

[25] A Neeman, A Ranicki, Noncommutative localization and chain complexes I: Algebraic $K$– and $L$–theory

[26] A Neeman, A Ranicki, Noncommutative localisation in algebraic $K$–theory II

[27] A Neeman, A Ranicki, Noncommutative localisation in algebraic $K$–theory

[28] A Neeman, A Ranicki, A Schofield, Representations of algebras as universal localizations, Math. Proc. Cambridge Philos. Soc. 136 (2004) 105

[29] D Quillen, Higher algebraic $K$–theory I, from: "Algebraic $K$–theory, I: Higher $K$–theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972)", Springer (1973)

[30] A Ranicki, High-dimensional knot theory, Springer Monographs in Mathematics, Springer (1998)

[31] A Ranicki, Noncommutative localization in topology, from: "Non-commutative localization in algebra and topology", London Math. Soc. Lecture Note Ser. 330, Cambridge Univ. Press (2006) 81

[32] J Rickard, Morita theory for derived categories, J. London Math. Soc. $(2)$ 39 (1989) 436

[33] A H Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series 92, Cambridge University Press (1985)

[34] N Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988) 121

[35] R W Thomason, T Trobaugh, Higher algebraic $K$–theory of schemes and of derived categories, from: "The Grothendieck Festschrift, Vol. III", Progr. Math. 88, Birkhäuser (1990) 247

[36] P Vogel, Localization in algebraic $L$–theory, from: "Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979)", Lecture Notes in Math. 788, Springer (1980) 482

[37] P Vogel, On the obstruction group in homology surgery, Inst. Hautes Études Sci. Publ. Math. (1982) 165

[38] F Waldhausen, Algebraic $K$–theory of spaces, from: "Algebraic and geometric topology (New Brunswick, N.J., 1983)", Lecture Notes in Math. 1126, Springer (1985) 318

[39] C A Weibel, Negative $K$–theory of varieties with isolated singularities, from: "Proceedings of the Luminy conference on algebraic $K$–theory (Luminy, 1983)" (1984) 331

[40] C A Weibel, A Brown–Gersten spectral sequence for the $K$–theory of varieties with isolated singularities, Adv. in Math. 73 (1989) 192

[41] C Weibel, D Yao, Localization for the $K$–theory of noncommutative rings, from: "Algebraic $K$–theory, commutative algebra, and algebraic geometry (Santa Margherita Ligure, 1989)", Contemp. Math. 126, Amer. Math. Soc. (1992) 219

[42] D Yao, Higher algebraic $K$–theory of admissible abelian categories and localization theorems, J. Pure Appl. Algebra 77 (1992) 263

Cité par Sources :