Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
From a simple observation about a construction of Thurston, we derive several interesting facts about subgroups of the mapping class group generated by two positive multi-twists. In particular, we identify all configurations of curves for which the corresponding groups fail to be free, and show that a subset of these determine the same set of Teichmüller curves as the non-obtuse lattice triangles which were classified by Kenyon, Smillie, and Puchta. We also identify a pseudo-Anosov automorphism whose dilatation is Lehmer’s number, and show that this is minimal for the groups under consideration. In addition, we describe a connection to work of McMullen on Coxeter groups and related work of Hironaka on a construction of an interesting class of fibered links.
Leininger, Christopher J 1
@article{GT_2004_8_3_a9, author = {Leininger, Christopher J}, title = {On groups generated by two positive multi-twists: {Teichmueller} curves and {Lehmer{\textquoteright}s} number}, journal = {Geometry & topology}, pages = {1301--1359}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2004}, doi = {10.2140/gt.2004.8.1301}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1301/} }
TY - JOUR AU - Leininger, Christopher J TI - On groups generated by two positive multi-twists: Teichmueller curves and Lehmer’s number JO - Geometry & topology PY - 2004 SP - 1301 EP - 1359 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1301/ DO - 10.2140/gt.2004.8.1301 ID - GT_2004_8_3_a9 ER -
%0 Journal Article %A Leininger, Christopher J %T On groups generated by two positive multi-twists: Teichmueller curves and Lehmer’s number %J Geometry & topology %D 2004 %P 1301-1359 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1301/ %R 10.2140/gt.2004.8.1301 %F GT_2004_8_3_a9
Leininger, Christopher J. On groups generated by two positive multi-twists: Teichmueller curves and Lehmer’s number. Geometry & topology, Tome 8 (2004) no. 3, pp. 1301-1359. doi : 10.2140/gt.2004.8.1301. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1301/
[1] Le groupe de monodromie du déploiement des singularités isolées de courbes planes I, Math. Ann. 213 (1975) 1
,[2] Sur les valeurs propres de la transformation de Coxeter, Invent. Math. 33 (1976) 61
,[3] Generic immersions of curves, knots, monodromy and Gordian number, Inst. Hautes Études Sci. Publ. Math. (1998)
,[4] Planar trees, slalom curves and hyperbolic knots, Inst. Hautes Études Sci. Publ. Math. (1998)
,[5] An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361
,[6] The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer (1983)
,[7] The spectrum of a Coxeter transformation, affine Coxeter transformations, and the defect map, J. Algebra 121 (1989) 339
, , ,[8] Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)
,[9] Mapping class groups, Notes from a Columbia University course (2002)
,[10] Small Salem numbers, Duke Math. J. 44 (1977) 315
,[11] Pisot and Salem numbers in intervals of the real line, Math. Comp. 32 (1978) 1244
,[12] The graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$, Linear Algebra Appl. 114/115 (1989) 273
, ,[13] Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004) 871
,[14] The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group, Invent. Math. 145 (2001) 19
, ,[15] On graphs whose spectral radius does not exceed $(2+\sqrt{5})^{1/2}$, Ars Combin. 14 (1982) 225
, , ,[16] The largest eigenvalue of a graph: a survey, Linear and Multilinear Algebra 28 (1990) 3
, ,[17] Teichmüller disks and Veech's $\mathcal{F}$–structures, from: "Extremal Riemann surfaces (San Francisco, CA, 1995)", Contemp. Math. 201, Amer. Math. Soc. (1997) 165
, ,[18] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284
[19] Small Salem numbers, from: "Number theory in progress, Vol. 1 (Zakopane–Kościelisko, 1997)", de Gruyter (1999) 165
, , ,[20] The Murasugi sum is a natural geometric operation II, from: "Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982)", Contemp. Math. 44, Amer. Math. Soc. (1985) 93
,[21] Detecting fibred links in $S^3$, Comment. Math. Helv. 61 (1986) 519
,[22] The theory of matrices, Chelsea Publishing Co. (1959)
,[23] Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs 76, American Mathematical Society (2000)
, ,[24] The arithmetic and geometry of Salem numbers, Bull. Amer. Math. Soc. $($N.S.$)$ 38 (2001) 293
, ,[25] Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000) 191
, ,[26] Groups generated by positive multi-twists and the fake lantern problem, Algebr. Geom. Topol. 2 (2002) 1155
,[27] On certain families of compact Riemann surfaces, from: "Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991)", Contemp. Math. 150, Amer. Math. Soc. (1993) 137
,[28] Chord diagrams and Coxeter links, J. London Math. Soc. $(2)$ 69 (2004) 243
,[29] Coxeter groups and $M$–matrices, Bull. London Math. Soc. 14 (1982) 137
,[30] Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press (1990)
,[31] Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs 115, American Mathematical Society (1992)
,[32] Billiards on rational-angled triangles, Comment. Math. Helv. 75 (2000) 65
, ,[33] Ergodicity of billiard flows and quadratic differentials, Ann. of Math. $(2)$ 124 (1986) 293
, , ,[34] On the Nielsen–Thurston–Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981) 231
,[35] Factorization of certain cyclotomic functions, Ann. of Math. $(2)$ 34 (1933) 461
,[36] Constructing pseudo–Anosov maps, from: "Knot theory and manifolds (Vancouver, B.C., 1983)", Lecture Notes in Math. 1144, Springer (1985) 108
,[37] The arithmetic of hyperbolic 3–manifolds, Graduate Texts in Mathematics 219, Springer (2003)
, ,[38] Combinatorial group theory, Dover Publications (1976)
, , ,[39] A lantern lemma, Algebr. Geom. Topol. 2 (2002) 1179
,[40] Transitivity properties of the horocyclic and geodesic flows on moduli space, J. Analyse Math. 39 (1981) 1
,[41] Rational billiards and flat structures, from: "Handbook of dynamical systems, Vol. 1A", North-Holland (2002) 1015
, ,[42] Polynomial invariants for fibered 3–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. $(4)$ 33 (2000) 519
,[43] Coxeter groups, Salem numbers and the Hilbert metric, Publ. Math. Inst. Hautes Études Sci. (2002) 151
,[44] Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003) 857
,[45] Polynomials with small Mahler measure, Math. Comp. 67 (1998) 1697
,[46] Arithmetic of hyperbolic manifolds, from: "Topology '90 (Columbus, OH, 1990)", Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 273
, ,[47] A construction of pseudo–Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179
,[48] Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443
,[49] Groupe de monodromie géométrique des singularités simples, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992) 1067
, ,[50] On triangular billiards, Comment. Math. Helv. 76 (2001) 501
,[51] Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer (1994)
,[52] Knots and links, Mathematics Lecture Series 7, Publish or Perish (1990)
,[53] Some properties of the spectrum of a graph, from: "Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969)", Gordon and Breach (1970) 403
,[54] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417
,[55] The geometry and topology of three-manifolds, Princeton University course notes (1980)
,[56] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989) 553
,[57] The billiard in a regular polygon, Geom. Funct. Anal. 2 (1992) 341
,[58] Plane structures and billiards in rational polygons: the Veech alternative, Uspekhi Mat. Nauk 51 (1996) 3
,[59] A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983) 157
,[60] Artin groups and geometric monodromy, Invent. Math. 138 (1999) 563
,[61] Topological transitivity of billiards in polygons, Mat. Zametki 18 (1975) 291
, ,Cité par Sources :