On groups generated by two positive multi-twists: Teichmueller curves and Lehmer’s number
Geometry & topology, Tome 8 (2004) no. 3, pp. 1301-1359.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

From a simple observation about a construction of Thurston, we derive several interesting facts about subgroups of the mapping class group generated by two positive multi-twists. In particular, we identify all configurations of curves for which the corresponding groups fail to be free, and show that a subset of these determine the same set of Teichmüller curves as the non-obtuse lattice triangles which were classified by Kenyon, Smillie, and Puchta. We also identify a pseudo-Anosov automorphism whose dilatation is Lehmer’s number, and show that this is minimal for the groups under consideration. In addition, we describe a connection to work of McMullen on Coxeter groups and related work of Hironaka on a construction of an interesting class of fibered links.

DOI : 10.2140/gt.2004.8.1301
Keywords: Coxeter, Dehn twist, Lehmer, pseudo-Anosov, mapping class group, Teichmüller

Leininger, Christopher J 1

1 Department of Mathematics, Columbia University, 2990 Broadway MC 4448, New York, New York 10027, USA
@article{GT_2004_8_3_a9,
     author = {Leininger, Christopher J},
     title = {On groups generated by two positive multi-twists: {Teichmueller} curves and {Lehmer{\textquoteright}s} number},
     journal = {Geometry & topology},
     pages = {1301--1359},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1301},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1301/}
}
TY  - JOUR
AU  - Leininger, Christopher J
TI  - On groups generated by two positive multi-twists: Teichmueller curves and Lehmer’s number
JO  - Geometry & topology
PY  - 2004
SP  - 1301
EP  - 1359
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1301/
DO  - 10.2140/gt.2004.8.1301
ID  - GT_2004_8_3_a9
ER  - 
%0 Journal Article
%A Leininger, Christopher J
%T On groups generated by two positive multi-twists: Teichmueller curves and Lehmer’s number
%J Geometry & topology
%D 2004
%P 1301-1359
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1301/
%R 10.2140/gt.2004.8.1301
%F GT_2004_8_3_a9
Leininger, Christopher J. On groups generated by two positive multi-twists: Teichmueller curves and Lehmer’s number. Geometry & topology, Tome 8 (2004) no. 3, pp. 1301-1359. doi : 10.2140/gt.2004.8.1301. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1301/

[1] N A’Campo, Le groupe de monodromie du déploiement des singularités isolées de courbes planes I, Math. Ann. 213 (1975) 1

[2] N A’Campo, Sur les valeurs propres de la transformation de Coxeter, Invent. Math. 33 (1976) 61

[3] N A’Campo, Generic immersions of curves, knots, monodromy and Gordian number, Inst. Hautes Études Sci. Publ. Math. (1998)

[4] N A’Campo, Planar trees, slalom curves and hyperbolic knots, Inst. Hautes Études Sci. Publ. Math. (1998)

[5] M Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361

[6] A F Beardon, The geometry of discrete groups, Graduate Texts in Mathematics 91, Springer (1983)

[7] S Berman, Y S Lee, R V Moody, The spectrum of a Coxeter transformation, affine Coxeter transformations, and the defect map, J. Algebra 121 (1989) 339

[8] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)

[9] J Birman, Mapping class groups, Notes from a Columbia University course (2002)

[10] D W Boyd, Small Salem numbers, Duke Math. J. 44 (1977) 315

[11] D W Boyd, Pisot and Salem numbers in intervals of the real line, Math. Comp. 32 (1978) 1244

[12] A E Brouwer, A Neumaier, The graphs with spectral radius between 2 and $\sqrt{2+\sqrt{5}}$, Linear Algebra Appl. 114/115 (1989) 273

[13] K Calta, Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc. 17 (2004) 871

[14] J Crisp, L Paris, The solution to a conjecture of Tits on the subgroup generated by the squares of the generators of an Artin group, Invent. Math. 145 (2001) 19

[15] D Cvetković, M Doob, I Gutman, On graphs whose spectral radius does not exceed $(2+\sqrt{5})^{1/2}$, Ars Combin. 14 (1982) 225

[16] D Cvetković, P Rowlinson, The largest eigenvalue of a graph: a survey, Linear and Multilinear Algebra 28 (1990) 3

[17] C J Earle, F P Gardiner, Teichmüller disks and Veech's $\mathcal{F}$–structures, from: "Extremal Riemann surfaces (San Francisco, CA, 1995)", Contemp. Math. 201, Amer. Math. Soc. (1997) 165

[18] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284

[19] V Flammang, M Grandcolas, G Rhin, Small Salem numbers, from: "Number theory in progress, Vol. 1 (Zakopane–Kościelisko, 1997)", de Gruyter (1999) 165

[20] D Gabai, The Murasugi sum is a natural geometric operation II, from: "Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982)", Contemp. Math. 44, Amer. Math. Soc. (1985) 93

[21] D Gabai, Detecting fibred links in $S^3$, Comment. Math. Helv. 61 (1986) 519

[22] F R Gantmacher, The theory of matrices, Chelsea Publishing Co. (1959)

[23] F P Gardiner, N Lakic, Quasiconformal Teichmüller theory, Mathematical Surveys and Monographs 76, American Mathematical Society (2000)

[24] E Ghate, E Hironaka, The arithmetic and geometry of Salem numbers, Bull. Amer. Math. Soc. $($N.S.$)$ 38 (2001) 293

[25] E Gutkin, C Judge, Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J. 103 (2000) 191

[26] H Hamidi-Tehrani, Groups generated by positive multi-twists and the fake lantern problem, Algebr. Geom. Topol. 2 (2002) 1155

[27] W J Harvey, On certain families of compact Riemann surfaces, from: "Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991)", Contemp. Math. 150, Amer. Math. Soc. (1993) 137

[28] E Hironaka, Chord diagrams and Coxeter links, J. London Math. Soc. $(2)$ 69 (2004) 243

[29] R B Howlett, Coxeter groups and $M$–matrices, Bull. London Math. Soc. 14 (1982) 137

[30] J E Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics 29, Cambridge University Press (1990)

[31] N V Ivanov, Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs 115, American Mathematical Society (1992)

[32] R Kenyon, J Smillie, Billiards on rational-angled triangles, Comment. Math. Helv. 75 (2000) 65

[33] S Kerckhoff, H Masur, J Smillie, Ergodicity of billiard flows and quadratic differentials, Ann. of Math. $(2)$ 124 (1986) 293

[34] I Kra, On the Nielsen–Thurston–Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981) 231

[35] D H Lehmer, Factorization of certain cyclotomic functions, Ann. of Math. $(2)$ 34 (1933) 461

[36] D D Long, Constructing pseudo–Anosov maps, from: "Knot theory and manifolds (Vancouver, B.C., 1983)", Lecture Notes in Math. 1144, Springer (1985) 108

[37] C Maclachlan, A W Reid, The arithmetic of hyperbolic 3–manifolds, Graduate Texts in Mathematics 219, Springer (2003)

[38] W Magnus, A Karrass, D Solitar, Combinatorial group theory, Dover Publications (1976)

[39] D Margalit, A lantern lemma, Algebr. Geom. Topol. 2 (2002) 1179

[40] H Masur, Transitivity properties of the horocyclic and geodesic flows on moduli space, J. Analyse Math. 39 (1981) 1

[41] H Masur, S Tabachnikov, Rational billiards and flat structures, from: "Handbook of dynamical systems, Vol. 1A", North-Holland (2002) 1015

[42] C T Mcmullen, Polynomial invariants for fibered 3–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. $(4)$ 33 (2000) 519

[43] C T Mcmullen, Coxeter groups, Salem numbers and the Hilbert metric, Publ. Math. Inst. Hautes Études Sci. (2002) 151

[44] C T Mcmullen, Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc. 16 (2003) 857

[45] M J Mossinghoff, Polynomials with small Mahler measure, Math. Comp. 67 (1998) 1697

[46] W D Neumann, A W Reid, Arithmetic of hyperbolic manifolds, from: "Topology '90 (Columbus, OH, 1990)", Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 273

[47] R C Penner, A construction of pseudo–Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179

[48] R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443

[49] B Perron, J P Vannier, Groupe de monodromie géométrique des singularités simples, C. R. Acad. Sci. Paris Sér. I Math. 315 (1992) 1067

[50] J C Puchta, On triangular billiards, Comment. Math. Helv. 76 (2001) 501

[51] J G Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer (1994)

[52] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1990)

[53] J H Smith, Some properties of the spectrum of a graph, from: "Combinatorial Structures and their Applications (Proc. Calgary Internat. Conf., Calgary, Alta., 1969)", Gordon and Breach (1970) 403

[54] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417

[55] W P Thurston, The geometry and topology of three-manifolds, Princeton University course notes (1980)

[56] W A Veech, Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math. 97 (1989) 553

[57] W A Veech, The billiard in a regular polygon, Geom. Funct. Anal. 2 (1992) 341

[58] Y B Vorobets, Plane structures and billiards in rational polygons: the Veech alternative, Uspekhi Mat. Nauk 51 (1996) 3

[59] B Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983) 157

[60] B Wajnryb, Artin groups and geometric monodromy, Invent. Math. 138 (1999) 563

[61] A N Zemljakov, A B Katok, Topological transitivity of billiards in polygons, Mat. Zametki 18 (1975) 291

Cité par Sources :