The proof of Birman’s conjecture on singular braid monoids
Geometry & topology, Tome 8 (2004) no. 3, pp. 1281-1300.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Bn be the Artin braid group on n strings with standard generators σ1,,σn1, and let SBn be the singular braid monoid with generators σ1±1,,σn1±1,τ1,,τn1. The desingularization map is the multiplicative homomorphism η: SBn [Bn] defined by η(σi±1) = σi±1 and η(τi) = σi σi1, for 1 i n 1. The purpose of the present paper is to prove Birman’s conjecture, namely, that the desingularization map η is injective.

DOI : 10.2140/gt.2004.8.1281
Keywords: singular braids, desingularization, Birman's conjecture

Paris, Luis 1

1 Institut de Mathématiques de Bourgogne, Université de Bourgogne, UMR 5584 du CNRS, BP 47870, 21078 Dijon cedex, France
@article{GT_2004_8_3_a8,
     author = {Paris, Luis},
     title = {The proof of {Birman{\textquoteright}s} conjecture on singular braid monoids},
     journal = {Geometry & topology},
     pages = {1281--1300},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1281},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1281/}
}
TY  - JOUR
AU  - Paris, Luis
TI  - The proof of Birman’s conjecture on singular braid monoids
JO  - Geometry & topology
PY  - 2004
SP  - 1281
EP  - 1300
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1281/
DO  - 10.2140/gt.2004.8.1281
ID  - GT_2004_8_3_a8
ER  - 
%0 Journal Article
%A Paris, Luis
%T The proof of Birman’s conjecture on singular braid monoids
%J Geometry & topology
%D 2004
%P 1281-1300
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1281/
%R 10.2140/gt.2004.8.1281
%F GT_2004_8_3_a8
Paris, Luis. The proof of Birman’s conjecture on singular braid monoids. Geometry & topology, Tome 8 (2004) no. 3, pp. 1281-1300. doi : 10.2140/gt.2004.8.1281. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1281/

[1] J C Baez, Link invariants of finite type and perturbation theory, Lett. Math. Phys. 26 (1992) 43

[2] G Basset, Quasi-commuting extensions of groups, Comm. Algebra 28 (2000) 5443

[3] D Bar-Natan, Vassiliev homotopy string link invariants, J. Knot Theory Ramifications 4 (1995) 13

[4] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)

[5] J S Birman, New points of view in knot theory, Bull. Amer. Math. Soc. $($N.S.$)$ 28 (1993) 253

[6] N Bourbaki, Groupes et algèbres de Lie, Chapitres II et III, Actualités Scientifiques et Industrielles 1349, Hermann (1972) 320

[7] P Cartier, D Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Mathematics 85, Springer (1969)

[8] R Corran, A normal form for a class of monoids including the singular braid monoids, J. Algebra 223 (2000) 256

[9] G Duchamp, D Krob, Free partially commutative structures, J. Algebra 156 (1993) 318

[10] C Duboc, Commutations dans les monoïdes libres: un cadre théorique pour l'étude du parallélisme, PhD thesis, Université de Rouen (1986)

[11] R Fenn, E Keyman, C Rourke, The singular braid monoid embeds in a group, J. Knot Theory Ramifications 7 (1998) 881

[12] R Fenn, D Rolfsen, J Zhu, Centralisers in the braid group and singular braid monoid, Enseign. Math. $(2)$ 42 (1996) 75

[13] A Járai Jr., On the monoid of singular braids, Topology Appl. 96 (1999) 109

[14] E Keyman, A class of monoids embeddable in a group, Turkish J. Math. 25 (2001) 299

[15] T Kohno, Vassiliev invariants and de Rham complex on the space of knots, from: "Symplectic geometry and quantization (Sanda and Yokohama, 1993)", Contemp. Math. 179, Amer. Math. Soc. (1994) 123

[16] Ş Papadima, The universal finite-type invariant for braids, with integer coefficients, Topology Appl. 118 (2002) 169

[17] J Zhu, On singular braids, J. Knot Theory Ramifications 6 (1997) 427

Cité par Sources :