Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be the Artin braid group on strings with standard generators , and let be the singular braid monoid with generators . The desingularization map is the multiplicative homomorphism defined by and , for . The purpose of the present paper is to prove Birman’s conjecture, namely, that the desingularization map is injective.
Paris, Luis 1
@article{GT_2004_8_3_a8, author = {Paris, Luis}, title = {The proof of {Birman{\textquoteright}s} conjecture on singular braid monoids}, journal = {Geometry & topology}, pages = {1281--1300}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2004}, doi = {10.2140/gt.2004.8.1281}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1281/} }
Paris, Luis. The proof of Birman’s conjecture on singular braid monoids. Geometry & topology, Tome 8 (2004) no. 3, pp. 1281-1300. doi : 10.2140/gt.2004.8.1281. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1281/
[1] Link invariants of finite type and perturbation theory, Lett. Math. Phys. 26 (1992) 43
,[2] Quasi-commuting extensions of groups, Comm. Algebra 28 (2000) 5443
,[3] Vassiliev homotopy string link invariants, J. Knot Theory Ramifications 4 (1995) 13
,[4] Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)
,[5] New points of view in knot theory, Bull. Amer. Math. Soc. $($N.S.$)$ 28 (1993) 253
,[6] Groupes et algèbres de Lie, Chapitres II et III, Actualités Scientifiques et Industrielles 1349, Hermann (1972) 320
,[7] Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Mathematics 85, Springer (1969)
, ,[8] A normal form for a class of monoids including the singular braid monoids, J. Algebra 223 (2000) 256
,[9] Free partially commutative structures, J. Algebra 156 (1993) 318
, ,[10] Commutations dans les monoïdes libres: un cadre théorique pour l'étude du parallélisme, PhD thesis, Université de Rouen (1986)
,[11] The singular braid monoid embeds in a group, J. Knot Theory Ramifications 7 (1998) 881
, , ,[12] Centralisers in the braid group and singular braid monoid, Enseign. Math. $(2)$ 42 (1996) 75
, , ,[13] On the monoid of singular braids, Topology Appl. 96 (1999) 109
,[14] A class of monoids embeddable in a group, Turkish J. Math. 25 (2001) 299
,[15] Vassiliev invariants and de Rham complex on the space of knots, from: "Symplectic geometry and quantization (Sanda and Yokohama, 1993)", Contemp. Math. 179, Amer. Math. Soc. (1994) 123
,[16] The universal finite-type invariant for braids, with integer coefficients, Topology Appl. 118 (2002) 169
,[17] On singular braids, J. Knot Theory Ramifications 6 (1997) 427
,Cité par Sources :