Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We use contact handle decompositions and a stabilization process to compute the cylindrical contact homology of a subcritical Stein-fillable contact manifold with vanishing first Chern class, and show that it is completely determined by the homology of a subcritical Stein-filling of the contact manifold.
Yau, Mei-Lin 1
@article{GT_2004_8_3_a7, author = {Yau, Mei-Lin}, title = {Cylindrical contact homology of subcritical {Stein-fillable} contact manifolds}, journal = {Geometry & topology}, pages = {1243--1280}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2004}, doi = {10.2140/gt.2004.8.1243}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1243/} }
TY - JOUR AU - Yau, Mei-Lin TI - Cylindrical contact homology of subcritical Stein-fillable contact manifolds JO - Geometry & topology PY - 2004 SP - 1243 EP - 1280 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1243/ DO - 10.2140/gt.2004.8.1243 ID - GT_2004_8_3_a7 ER -
Yau, Mei-Lin. Cylindrical contact homology of subcritical Stein-fillable contact manifolds. Geometry & topology, Tome 8 (2004) no. 3, pp. 1243-1280. doi : 10.2140/gt.2004.8.1243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1243/
[1] A Morse–Bott approach to contact homology, PhD thesis (2002)
,[2] Introduction to contact homology, from: "Summer School in Berder: Holomorphic curves and contact topology" (2003)
,[3] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799
, , , , ,[4] Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441
,[5] Symplectic homology of Weinstein manifolds, preprint
, , ,[6] Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984) 207
, ,[7] Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623
,[8] Topological characterization of Stein manifolds of dimension $>2$, Internat. J. Math. 1 (1990) 29
,[9] Symplectic geometry of plurisubharmonic functions, from: "Gauge theory and symplectic geometry (Montreal, PQ, 1995)", NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ. (1997) 49
,[10] Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 327
,[11] Symplectic topology in the nineties, Differential Geom. Appl. 9 (1998) 59
,[12] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[13] Contact structures on $(n-1)$–connected $(2n+1)$–manifolds, Pacific J. Math. 161 (1993) 129
,[14] Applications of contact surgery, Topology 36 (1997) 1193
,[15] Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. $(4)$ 27 (1994) 697
,[16] Some global properties of contact structures, Ann. of Math. $(2)$ 69 (1959) 421
,[17] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[18] A characterisation of the tight three-sphere, Duke Math. J. 81 (1995)
, , ,[19] A characterization of the tight 3–sphere II, Comm. Pure Appl. Math. 52 (1999) 1139
, , ,[20] Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337
, , ,[21] Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: "Topics in nonlinear analysis", Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381
, , ,[22] On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309
,[23] On the classification of tight contact structures II, J. Differential Geom. 55 (2000) 83
,[24] Monopoles and contact structures, Invent. Math. 130 (1997) 209
, ,[25] Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977) 1
,[26] Formes de contact sur les variétés de dimension 3, from: "Proceedings of Liverpool Singularities Symposium, II (1969/1970)", Springer (1971)
,[27] Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998)
, ,[28] $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)
, ,[29] Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press (1963)
,[30] The Maslov index for paths, Topology 32 (1993) 827
, ,[31] Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303
, ,[32] Infinitely many contact structures on $S^{4m+1}$, Internat. Math. Res. Notices (1999) 781
,[33] Contact homology and contact structures on $S^{4m+1}$, PhD thesis (1999)
,[34] Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241
,Cité par Sources :