Cylindrical contact homology of subcritical Stein-fillable contact manifolds
Geometry & topology, Tome 8 (2004) no. 3, pp. 1243-1280.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use contact handle decompositions and a stabilization process to compute the cylindrical contact homology of a subcritical Stein-fillable contact manifold with vanishing first Chern class, and show that it is completely determined by the homology of a subcritical Stein-filling of the contact manifold.

DOI : 10.2140/gt.2004.8.1243
Keywords: subcritical Stein-fillable contact manifold, cylindrical contact homology, holomorphic curves, contact handles, Reeb vector field

Yau, Mei-Lin 1

1 Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, USA
@article{GT_2004_8_3_a7,
     author = {Yau, Mei-Lin},
     title = {Cylindrical contact homology of subcritical {Stein-fillable} contact manifolds},
     journal = {Geometry & topology},
     pages = {1243--1280},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1243},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1243/}
}
TY  - JOUR
AU  - Yau, Mei-Lin
TI  - Cylindrical contact homology of subcritical Stein-fillable contact manifolds
JO  - Geometry & topology
PY  - 2004
SP  - 1243
EP  - 1280
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1243/
DO  - 10.2140/gt.2004.8.1243
ID  - GT_2004_8_3_a7
ER  - 
%0 Journal Article
%A Yau, Mei-Lin
%T Cylindrical contact homology of subcritical Stein-fillable contact manifolds
%J Geometry & topology
%D 2004
%P 1243-1280
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1243/
%R 10.2140/gt.2004.8.1243
%F GT_2004_8_3_a7
Yau, Mei-Lin. Cylindrical contact homology of subcritical Stein-fillable contact manifolds. Geometry & topology, Tome 8 (2004) no. 3, pp. 1243-1280. doi : 10.2140/gt.2004.8.1243. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1243/

[1] F Bourgeois, A Morse–Bott approach to contact homology, PhD thesis (2002)

[2] F Bourgeois, Introduction to contact homology, from: "Summer School in Berder: Holomorphic curves and contact topology" (2003)

[3] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[4] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[5] K Cieliebak, Y Eliashberg, H Hofer, Symplectic homology of Weinstein manifolds, preprint

[6] C Conley, E Zehnder, Morse-type index theory for flows and periodic solutions for Hamiltonian equations, Comm. Pure Appl. Math. 37 (1984) 207

[7] Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623

[8] Y Eliashberg, Topological characterization of Stein manifolds of dimension $>2$, Internat. J. Math. 1 (1990) 29

[9] Y Eliashberg, Symplectic geometry of plurisubharmonic functions, from: "Gauge theory and symplectic geometry (Montreal, PQ, 1995)", NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ. (1997) 49

[10] Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 327

[11] Y Eliashberg, Symplectic topology in the nineties, Differential Geom. Appl. 9 (1998) 59

[12] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[13] H Geiges, Contact structures on $(n-1)$–connected $(2n+1)$–manifolds, Pacific J. Math. 161 (1993) 129

[14] H Geiges, Applications of contact surgery, Topology 36 (1997) 1193

[15] E Giroux, Une structure de contact, même tendue, est plus ou moins tordue, Ann. Sci. École Norm. Sup. $(4)$ 27 (1994) 697

[16] J W Gray, Some global properties of contact structures, Ann. of Math. $(2)$ 69 (1959) 421

[17] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[18] H Hofer, K Wysocki, E Zehnder, A characterisation of the tight three-sphere, Duke Math. J. 81 (1995)

[19] H Hofer, K Wysocki, E Zehnder, A characterization of the tight 3–sphere II, Comm. Pure Appl. Math. 52 (1999) 1139

[20] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337

[21] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: "Topics in nonlinear analysis", Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381

[22] K Honda, On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309

[23] K Honda, On the classification of tight contact structures II, J. Differential Geom. 55 (2000) 83

[24] P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209

[25] R Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977) 1

[26] J Martinet, Formes de contact sur les variétés de dimension 3, from: "Proceedings of Liverpool Singularities Symposium, II (1969/1970)", Springer (1971)

[27] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998)

[28] D Mcduff, D Salamon, $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)

[29] J Milnor, Morse theory, Based on lecture notes by M. Spivak and R. Wells. Annals of Mathematics Studies, No. 51, Princeton University Press (1963)

[30] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827

[31] D Salamon, E Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303

[32] I Ustilovsky, Infinitely many contact structures on $S^{4m+1}$, Internat. Math. Res. Notices (1999) 781

[33] I Ustilovsky, Contact homology and contact structures on $S^{4m+1}$, PhD thesis (1999)

[34] A Weinstein, Contact surgery and symplectic handlebodies, Hokkaido Math. J. 20 (1991) 241

Cité par Sources :