Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce a pair of isospectral but non-isometric compact flat 3–manifolds called (a tetracosm) and (a didicosm). The closed geodesics of and are very different. Where has two quarter-twisting geodesics of the shortest length, has four half-twisting geodesics. Nevertheless, these spaces are isospectral. This isospectrality can be proven directly by matching eigenfunctions having the same eigenvalue. However, the real interest of this pair – and what led us to discover it – is the way isospectrality emerges from the Selberg trace formula, as the result of a delicate interplay between the lengths and twists of closed geodesics.
Doyle, Peter G 1 ; Rossetti, Juan Pablo 2
@article{GT_2004_8_3_a6, author = {Doyle, Peter G and Rossetti, Juan Pablo}, title = {Tetra and {Didi,} the cosmic spectral twins}, journal = {Geometry & topology}, pages = {1227--1242}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2004}, doi = {10.2140/gt.2004.8.1227}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1227/} }
TY - JOUR AU - Doyle, Peter G AU - Rossetti, Juan Pablo TI - Tetra and Didi, the cosmic spectral twins JO - Geometry & topology PY - 2004 SP - 1227 EP - 1242 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1227/ DO - 10.2140/gt.2004.8.1227 ID - GT_2004_8_3_a6 ER -
Doyle, Peter G; Rossetti, Juan Pablo. Tetra and Didi, the cosmic spectral twins. Geometry & topology, Tome 8 (2004) no. 3, pp. 1227-1242. doi : 10.2140/gt.2004.8.1227. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1227/
[1] Laplacien et géodésiques fermées sur les formes d'espace hyperbolique compactes, from: "Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 406", Springer (1973)
,[2] Describing the platycosms
, ,[3] Four-dimensional lattices with the same theta series, Internat. Math. Res. Notices (1992) 93
, ,[4] The length spectra of some compact manifolds of negative curvature, J. Differential Geom. 12 (1977) 403
,[5] Isospectral manifolds with different local geometry, J. Korean Math. Soc. 38 (2001) 955
,[6] Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann. 138 (1959) 1
,[7] Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen II, Math. Ann. 143 (1961) 463
,[8] Flat manifolds isospectral on $p$–forms, J. Geom. Anal. 11 (2001) 649
, ,[9] Length spectra and $p$–spectra of compact flat manifolds, J. Geom. Anal. 13 (2003) 631
, ,[10] Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964) 542
,[11] Isospectrality and commensurability of arithmetic hyperbolic 2- and 3–manifolds, Duke Math. J. 65 (1992) 215
,[12] Hearing the platycosms, Math. Res. Lett. 13 (2006) 475
, ,[13] Ternary positive definite quadratic forms are determined by their theta series, Math. Ann. 308 (1997) 507
,[14] Spectrum of a compact flat manifold, Comment. Math. Helv. 53 (1978) 613
,[15] The shape of space, Monographs and Textbooks in Pure and Applied Mathematics 249, Marcel Dekker (2002)
,[16] Real-time rendering in curved spaces, IEEE Computer Graphics and Applications 22 (2002) 90
,Cité par Sources :