Tetra and Didi, the cosmic spectral twins
Geometry & topology, Tome 8 (2004) no. 3, pp. 1227-1242.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce a pair of isospectral but non-isometric compact flat 3–manifolds called Tetra (a tetracosm) and Didi (a didicosm). The closed geodesics of Tetra and Didi are very different. Where Tetra has two quarter-twisting geodesics of the shortest length, Didi has four half-twisting geodesics. Nevertheless, these spaces are isospectral. This isospectrality can be proven directly by matching eigenfunctions having the same eigenvalue. However, the real interest of this pair – and what led us to discover it – is the way isospectrality emerges from the Selberg trace formula, as the result of a delicate interplay between the lengths and twists of closed geodesics.

DOI : 10.2140/gt.2004.8.1227
Keywords: flat structure, 3–manifold, platycosm, Laplace spectrum, isospectral, Selberg trace formula, closed geodesic

Doyle, Peter G 1 ; Rossetti, Juan Pablo 2

1 Department of Mathematics, Dartmouth College, Hanover, New Hampshire 03755-3551, USA
2 FaMAF – Ciem, Universidad Nacional de Córdoba, Argentina
@article{GT_2004_8_3_a6,
     author = {Doyle, Peter G and Rossetti, Juan Pablo},
     title = {Tetra and {Didi,} the cosmic spectral twins},
     journal = {Geometry & topology},
     pages = {1227--1242},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1227},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1227/}
}
TY  - JOUR
AU  - Doyle, Peter G
AU  - Rossetti, Juan Pablo
TI  - Tetra and Didi, the cosmic spectral twins
JO  - Geometry & topology
PY  - 2004
SP  - 1227
EP  - 1242
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1227/
DO  - 10.2140/gt.2004.8.1227
ID  - GT_2004_8_3_a6
ER  - 
%0 Journal Article
%A Doyle, Peter G
%A Rossetti, Juan Pablo
%T Tetra and Didi, the cosmic spectral twins
%J Geometry & topology
%D 2004
%P 1227-1242
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1227/
%R 10.2140/gt.2004.8.1227
%F GT_2004_8_3_a6
Doyle, Peter G; Rossetti, Juan Pablo. Tetra and Didi, the cosmic spectral twins. Geometry & topology, Tome 8 (2004) no. 3, pp. 1227-1242. doi : 10.2140/gt.2004.8.1227. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1227/

[1] L Bérard-Bergery, Laplacien et géodésiques fermées sur les formes d'espace hyperbolique compactes, from: "Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 406", Springer (1973)

[2] J H Conway, J P Rossetti, Describing the platycosms

[3] J H Conway, N A Sloane, Four-dimensional lattices with the same theta series, Internat. Math. Res. Notices (1992) 93

[4] R Gangolli, The length spectra of some compact manifolds of negative curvature, J. Differential Geom. 12 (1977) 403

[5] C S Gordon, Isospectral manifolds with different local geometry, J. Korean Math. Soc. 38 (2001) 955

[6] H Huber, Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen, Math. Ann. 138 (1959) 1

[7] H Huber, Zur analytischen Theorie hyperbolischer Raumformen und Bewegungsgruppen II, Math. Ann. 143 (1961) 463

[8] R J Miatello, J P Rossetti, Flat manifolds isospectral on $p$–forms, J. Geom. Anal. 11 (2001) 649

[9] R J Miatello, J P Rossetti, Length spectra and $p$–spectra of compact flat manifolds, J. Geom. Anal. 13 (2003) 631

[10] J Milnor, Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A. 51 (1964) 542

[11] A W Reid, Isospectrality and commensurability of arithmetic hyperbolic 2- and 3–manifolds, Duke Math. J. 65 (1992) 215

[12] J P Rossetti, J H Conway, Hearing the platycosms, Math. Res. Lett. 13 (2006) 475

[13] A Schiemann, Ternary positive definite quadratic forms are determined by their theta series, Math. Ann. 308 (1997) 507

[14] T Sunada, Spectrum of a compact flat manifold, Comment. Math. Helv. 53 (1978) 613

[15] J R Weeks, The shape of space, Monographs and Textbooks in Pure and Applied Mathematics 249, Marcel Dekker (2002)

[16] J R Weeks, Real-time rendering in curved spaces, IEEE Computer Graphics and Applications 22 (2002) 90

Cité par Sources :