A field theory for symplectic fibrations over surfaces
Geometry & topology, Tome 8 (2004) no. 3, pp. 1189-1226.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce in this paper a field theory on symplectic manifolds that are fibered over a real surface with interior marked points and cylindrical ends. We assign to each such object a morphism between certain tensor products of quantum and Floer homologies that are canonically attached to the fibration. We prove a composition theorem in the spirit of QFT, and show that this field theory applies naturally to the problem of minimising geodesics in Hofer’s geometry. This work can be considered as a natural framework that incorporates both the Piunikhin–Salamon–Schwarz morphisms and the Seidel isomorphism.

DOI : 10.2140/gt.2004.8.1189
Keywords: symplectic fibration, field theory, quantum cohomology, Floer homology, Hofer's geometry, commutator length

Lalonde, Francois 1

1 Department of Mathematics and Statistics, University of Montreal, Montreal H3C 3J7, Quebec, Canada
@article{GT_2004_8_3_a5,
     author = {Lalonde, Francois},
     title = {A field theory for symplectic fibrations over surfaces},
     journal = {Geometry & topology},
     pages = {1189--1226},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1189},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1189/}
}
TY  - JOUR
AU  - Lalonde, Francois
TI  - A field theory for symplectic fibrations over surfaces
JO  - Geometry & topology
PY  - 2004
SP  - 1189
EP  - 1226
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1189/
DO  - 10.2140/gt.2004.8.1189
ID  - GT_2004_8_3_a5
ER  - 
%0 Journal Article
%A Lalonde, Francois
%T A field theory for symplectic fibrations over surfaces
%J Geometry & topology
%D 2004
%P 1189-1226
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1189/
%R 10.2140/gt.2004.8.1189
%F GT_2004_8_3_a5
Lalonde, Francois. A field theory for symplectic fibrations over surfaces. Geometry & topology, Tome 8 (2004) no. 3, pp. 1189-1226. doi : 10.2140/gt.2004.8.1189. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1189/

[1] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560

[2] M Entov, $K$–area, Hofer metric and geometry of conjugacy classes in Lie groups, Invent. Math. 146 (2001) 93

[3] M Entov, Commutator length of symplectomorphisms, Comment. Math. Helv. 79 (2004) 58

[4] D Gatien, F Lalonde, Holomorphic cylinders with Lagrangian boundaries and Hamiltonian dynamics, Duke Math. J. 102 (2000) 485

[5] E Kerman, F Lalonde, Length minimizing Hamiltonian paths for symplectically aspherical manifolds, Ann. Inst. Fourier (Grenoble) 53 (2003) 1503

[6] F Lalonde, D Mcduff, Hofer's $L^\infty$–geometry: energy and stability of Hamiltonian flows I, II, Invent. Math. 122 (1995) 1, 35

[7] F Lalonde, D Mcduff, Local non-squeezing theorems and stability, Geom. Funct. Anal. 5 (1995) 364

[8] F Lalonde, D Mcduff, Symplectic structures on fiber bundles, Topology 42 (2003) 309

[9] F Lalonde, D Mcduff, L Polterovich, Topological rigidity of Hamiltonian loops and quantum homology, Invent. Math. 135 (1999) 369

[10] P Larchevêque, in preparation

[11] D Mcduff, Quantum homology of fibrations over $S^2$, Internat. J. Math. 11 (2000) 665

[12] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998)

[13] D Mcduff, D Salamon, $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)

[14] Y G Oh, Chain level Floer theory and Hofer's geometry of the Hamiltonian diffeomorphism group, Asian J. Math. 6 (2002) 579

[15] Y G Oh, Erratum to: “Chain level Floer theory and Hofer's geometry of the Hamiltonian diffeomorphism group”, Asian J. Math. 7 (2003) 447

[16] Y G Oh, Spectral invariants and the length minimizing property of Hamiltonian paths, Asian J. Math. 9 (2005) 1

[17] S Piunikhin, D Salamon, M Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171

[18] L Polterovich, The geometry of the group of symplectic diffeomorphisms, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001)

[19] Y Ruan, G Tian, A mathematical theory of quantum cohomology, J. Differential Geom. 42 (1995) 259

[20] D Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143

[21] M Schwarz, On the action spectrum for closed symplectically aspherical manifolds, Pacific J. Math. 193 (2000) 419

[22] P Seidel, $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046

Cité par Sources :