Unimodal generalized pseudo-Anosov maps
Geometry & topology, Tome 8 (2004) no. 3, pp. 1127-1188.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

An infinite family of generalized pseudo-Anosov homeomorphisms of the sphere S is constructed, and their invariant foliations and singular orbits are described explicitly by means of generalized train tracks. The complex strucure induced by the invariant foliations is described, and is shown to make S into a complex sphere. The generalized pseudo-Anosovs thus become quasiconformal automorphisms of the Riemann sphere, providing a complexification of the unimodal family which differs from that of the Fatou/Julia theory.

DOI : 10.2140/gt.2004.8.1127
Keywords: pseudo-Anosov homeomorphisms, train tracks, unimodal maps, horseshoe

de Carvalho, André 1 ; Hall, Toby 2

1 Departamento de Matemática Aplicada, IME - USP, Rua do Matão 1010, Cidade Universitária, 05508-090 São Paulo, São Paulo, Brazil
2 Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL, United Kingdom
@article{GT_2004_8_3_a4,
     author = {de Carvalho, Andr\'e and Hall, Toby},
     title = {Unimodal generalized {pseudo-Anosov} maps},
     journal = {Geometry & topology},
     pages = {1127--1188},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1127},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1127/}
}
TY  - JOUR
AU  - de Carvalho, André
AU  - Hall, Toby
TI  - Unimodal generalized pseudo-Anosov maps
JO  - Geometry & topology
PY  - 2004
SP  - 1127
EP  - 1188
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1127/
DO  - 10.2140/gt.2004.8.1127
ID  - GT_2004_8_3_a4
ER  - 
%0 Journal Article
%A de Carvalho, André
%A Hall, Toby
%T Unimodal generalized pseudo-Anosov maps
%J Geometry & topology
%D 2004
%P 1127-1188
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1127/
%R 10.2140/gt.2004.8.1127
%F GT_2004_8_3_a4
de Carvalho, André; Hall, Toby. Unimodal generalized pseudo-Anosov maps. Geometry & topology, Tome 8 (2004) no. 3, pp. 1127-1188. doi : 10.2140/gt.2004.8.1127. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1127/

[1] L V Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co. (1973)

[2] M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109

[3] P Boyland, Topological methods in surface dynamics, Topology Appl. 58 (1994) 223

[4] A De Carvalho, Extensions, quotients and generalized pseudo–Anosov maps, from: "Graphs and patterns in mathematics and theoretical physics", Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 315

[5] A De Carvalho, T Hall, Pruning theory and Thurston's classification of surface homeomorphisms, J. Eur. Math. Soc. $($JEMS$)$ 3 (2001) 287

[6] A De Carvalho, T Hall, Braid forcing and star-shaped train tracks, Topology 43 (2004) 247

[7] W De Melo, S Van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer (1993)

[8] R L Devaney, An introduction to chaotic dynamical systems, Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company Advanced Book Program (1989)

[9] C J Earle, F P Gardiner, Teichmüller disks and Veech's $\mathcal{F}$–structures, from: "Extremal Riemann surfaces (San Francisco, CA, 1995)", Contemp. Math. 201, Amer. Math. Soc. (1997) 165

[10] J Franks, M Misiurewicz, Cycles for disk homeomorphisms and thick trees, from: "Nielsen theory and dynamical systems (South Hadley, MA, 1992)", Contemp. Math. 152, Amer. Math. Soc. (1993) 69

[11] F R Gantmacher, The theory of matrices Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publishing Co. (1959)

[12] T Hall, The creation of horseshoes, Nonlinearity 7 (1994) 861

[13] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications 54, Cambridge University Press (1995)

[14] O Lehto, K I Virtanen, Quasiconformal mappings in the plane, Springer (1973)

[15] J Milnor, W Thurston, On iterated maps of the interval, from: "Dynamical systems (College Park, MD, 1986–87)", Lecture Notes in Math. 1342, Springer (1988) 465

[16] R L Moore, Foundations of point set theory, Revised edition. American Mathematical Society Colloquium Publications, Vol. XIII, American Mathematical Society (1962)

[17] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417

Cité par Sources :