Homotopy Lie algebras, lower central series and the Koszul property
Geometry & topology, Tome 8 (2004) no. 3, pp. 1079-1125.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let X and Y be finite-type CW–complexes (X connected, Y simply connected), such that the rational cohomology ring of Y is a k–rescaling of the rational cohomology ring of X. Assume H(X, ) is a Koszul algebra. Then, the homotopy Lie algebra π(ΩY ) equals, up to k–rescaling, the graded rational Lie algebra associated to the lower central series of π1(X). If Y is a formal space, this equality is actually equivalent to the Koszulness of H(X, ). If X is formal (and only then), the equality lifts to a filtered isomorphism between the Malcev completion of π1(X) and the completion of [ΩS2k+1,ΩY ]. Among spaces that admit naturally defined homological rescalings are complements of complex hyperplane arrangements, and complements of classical links. The Rescaling Formula holds for supersolvable arrangements, as well as for links with connected linking graph.

DOI : 10.2140/gt.2004.8.1079
Keywords: homotopy groups, Whitehead product, rescaling, Koszul algebra, lower central series, Quillen functors, Milnor–Moore group, Malcev completion, formal, coformal, subspace arrangement, spherical link

Papadima, Ştefan 1 ; Suciu, Alexander I 2

1 Institute of Mathematics of the Romanian Academy, PO Box 1-764, RO-014700 Bucharest, Romania
2 Department of Mathematics, Northeastern University, Boston, Massachusetts 02115, USA
@article{GT_2004_8_3_a3,
     author = {Papadima, \c{S}tefan and Suciu, Alexander I},
     title = {Homotopy {Lie} algebras, lower central series and the {Koszul} property},
     journal = {Geometry & topology},
     pages = {1079--1125},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1079},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1079/}
}
TY  - JOUR
AU  - Papadima, Ştefan
AU  - Suciu, Alexander I
TI  - Homotopy Lie algebras, lower central series and the Koszul property
JO  - Geometry & topology
PY  - 2004
SP  - 1079
EP  - 1125
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1079/
DO  - 10.2140/gt.2004.8.1079
ID  - GT_2004_8_3_a3
ER  - 
%0 Journal Article
%A Papadima, Ştefan
%A Suciu, Alexander I
%T Homotopy Lie algebras, lower central series and the Koszul property
%J Geometry & topology
%D 2004
%P 1079-1125
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1079/
%R 10.2140/gt.2004.8.1079
%F GT_2004_8_3_a3
Papadima, Ştefan; Suciu, Alexander I. Homotopy Lie algebras, lower central series and the Koszul property. Geometry & topology, Tome 8 (2004) no. 3, pp. 1079-1125. doi : 10.2140/gt.2004.8.1079. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1079/

[1] D J Anick, Connections between Yoneda and Pontrjagin algebras, from: "Algebraic topology, Aarhus 1982 (Aarhus, 1982)", Lecture Notes in Math. 1051, Springer (1984) 331

[2] H J Baues, Commutator calculus and groups of homotopy classes, London Mathematical Society Lecture Note Series 50, Cambridge University Press (1981)

[3] A Beilinson, V Ginzburg, W Soergel, Koszul duality patterns in representation theory, J. Amer. Math. Soc. 9 (1996) 473

[4] A K Bousfield, V K A M Gugenheim, On $\mathrm{PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976)

[5] B Berceanu, Ş Papadima, Cohomologically generic 2–complexes and 3–dimensional Poincaré complexes, Math. Ann. 298 (1994) 457

[6] R Bott, H Samelson, On the Pontryagin product in spaces of paths, Comment. Math. Helv. 27 (1953)

[7] E Brieskorn, Sur les groupes de tresses [d'après V I: Arnol' d], from: "Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 401", Springer (1973)

[8] D C Cohen, F R Cohen, M Xicoténcatl, Lie algebras associated to fiber-type arrangements, Int. Math. Res. Not. (2003) 1591

[9] F R Cohen, S Gitler, Loop spaces of configuration spaces, braid-like groups, and knots, from: "Cohomological methods in homotopy theory (Bellaterra, 1998)", Progr. Math. 196, Birkhäuser (2001) 59

[10] F R Cohen, S Gitler, On loop spaces of configuration spaces, Trans. Amer. Math. Soc. 354 (2002) 1705

[11] F R Cohen, T Kohno, M Xicoténcatl, Orbit configuration spaces associated to discrete subgroups of $\mathrm{PSL}(2,\mathbb{R})$

[12] F R Cohen, T Sato, On groups of homotopy groups, loop spaces and braid-like groups, preprint (2001)

[13] F R Cohen, M A Xicoténcatl, On orbit configuration spaces associated to the Gaussian integers: homotopy and homology groups, Topology Appl. 118 (2002) 17

[14] C De Concini, C Procesi, Wonderful models of subspace arrangements, Selecta Math. $($N.S.$)$ 1 (1995) 459

[15] P Deligne, P Griffiths, J Morgan, D Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975) 245

[16] E R Fadell, S Y Husseini, Geometry and topology of configuration spaces, Springer Monographs in Mathematics, Springer (2001)

[17] M Falk, R Randell, The lower central series of a fiber-type arrangement, Invent. Math. 82 (1985) 77

[18] A Hattori, Topology of $C^{n}$ minus a finite number of affine hyperplanes in general position, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 22 (1975) 205

[19] P Hilton, G Mislin, J Roitberg, Localization of nilpotent groups and spaces, North-Holland Mathematics Studies 15, North-Holland Publishing Co. (1975)

[20] M Jambu, S Papadima, A generalization of fiber-type arrangements and a new deformation method, Topology 37 (1998) 1135

[21] M A Kervaire, An interpretation of G. Whitehead's generalization of H. Hopf's invariant, Ann. of Math. $(2)$ 69 (1959) 345

[22] T Kohno, Série de Poincaré–Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985) 57

[23] U Koschorke, D Rolfsen, Higher-dimensional link operations and stable homotopy, Pacific J. Math. 139 (1989) 87

[24] J P Labute, On the descending central series of groups with a single defining relation, J. Algebra 14 (1970) 16

[25] M Lazard, Sur les groupes nilpotents et les anneaux de Lie, Ann. Sci. Ecole Norm. Sup. $(3)$ 71 (1954) 101

[26] M Markl, Ş Papadima, Homotopy Lie algebras and fundamental groups via deformation theory, Ann. Inst. Fourier (Grenoble) 42 (1992) 905

[27] J Milnor, Morse theory, Annals of Mathematics Studies 51, Princeton University Press (1963)

[28] J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. $(2)$ 81 (1965) 211

[29] J Neisendorfer, T Miller, Formal and coformal spaces, Illinois J. Math. 22 (1978) 565

[30] A Némethi, The link of the sum of two holomorphic functions, from: "Proceedings of the National Conference on Geometry and Topology (Romanian) (Tîrgovişte, 1986)", Univ. Bucureşti, Bucharest (1988) 181

[31] M Oka, On the fundamental group of the complement of certain plane curves, J. Math. Soc. Japan 30 (1978) 579

[32] Ş Papadima, The cellular structure of formal homotopy types, J. Pure Appl. Algebra 35 (1985) 171

[33] S Papadima, Campbell–Hausdorff invariants of links, Proc. London Math. Soc. $(3)$ 75 (1997) 641

[34] S Papadima, Braid commutators and homogenous Campbell–Hausdorff tests, Pacific J. Math. 197 (2001) 383

[35] S Papadima, A I Suciu, Rational homotopy groups and Koszul algebras, C. R. Math. Acad. Sci. Paris 335 (2002) 53

[36] S Papadima, A I Suciu, Chen Lie algebras, Int. Math. Res. Not. (2004) 1057

[37] S Papadima, S Yuzvinsky, On rational $K[\pi,1]$ spaces and Koszul algebras, J. Pure Appl. Algebra 144 (1999) 157

[38] G J Porter, Higher-order Whitehead products, Topology 3 (1965) 123

[39] S B Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970) 39

[40] D Quillen, Rational homotopy theory, Ann. of Math. $(2)$ 90 (1969) 205

[41] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1976)

[42] J E Roos, On the characterisation of Koszul algebras. Four counterexamples, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995) 15

[43] T Sato, On the group of morphisms of coalgebras, PhD thesis, University of Rochester, New York (2000)

[44] H Scheerer, On rationalized $H$– and co-$H$–spaces. With an appendix on decomposable $H$– and co-$H$–spaces, Manuscripta Math. 51 (1985) 63

[45] H K Schenck, A I Suciu, Lower central series and free resolutions of hyperplane arrangements, Trans. Amer. Math. Soc. 354 (2002) 3409

[46] J P Serre, Lie algebras and Lie groups, Lecture Notes in Mathematics 1500, Springer (1992)

[47] B Shelton, S Yuzvinsky, Koszul algebras from graphs and hyperplane arrangements, J. London Math. Soc. $(2)$ 56 (1997) 477

[48] H Shiga, N Yagita, Graded algebras having a unique rational homotopy type, Proc. Amer. Math. Soc. 85 (1982) 623

[49] T Stanford, Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996) 269

[50] D Sullivan, Infinitesimal computations in topology, Inst. Hautes Études Sci. Publ. Math. (1977)

[51] D Tanré, Homotopie rationnelle: modèles de Chen, Quillen, Sullivan, Lecture Notes in Mathematics 1025, Springer (1983)

[52] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978)

[53] S Yuzvinskiĭ, Orlik–Solomon algebras in algebra and topology, Uspekhi Mat. Nauk 56 (2001) 87

[54] S Yuzvinsky, Small rational model of subspace complement, Trans. Amer. Math. Soc. 354 (2002) 1921

Cité par Sources :