The surgery obstruction groups of the infinite dihedral group
Geometry & topology, Tome 8 (2004) no. 3, pp. 1043-1078.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This paper computes the quadratic Witt groups (the Wall L–groups) of the polynomial ring [t] and the integral group ring of the infinite dihedral group, with various involutions. We show that some of these groups are infinite direct sums of cyclic groups of order 2 and 4. The techniques used are quadratic linking forms over [t] and Arf invariants.

DOI : 10.2140/gt.2004.8.1043
Keywords: surgery, infinite dihedral group, Gauss sums

Connolly, Francis X 1 ; Davis, James F 2

1 Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556, USA
2 Department of Mathematics, Indiana University, Bloomington, Indiana 47405, USA
@article{GT_2004_8_3_a2,
     author = {Connolly, Francis X and Davis, James F},
     title = {The surgery obstruction groups of the infinite dihedral group},
     journal = {Geometry & topology},
     pages = {1043--1078},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1043},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1043/}
}
TY  - JOUR
AU  - Connolly, Francis X
AU  - Davis, James F
TI  - The surgery obstruction groups of the infinite dihedral group
JO  - Geometry & topology
PY  - 2004
SP  - 1043
EP  - 1078
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1043/
DO  - 10.2140/gt.2004.8.1043
ID  - GT_2004_8_3_a2
ER  - 
%0 Journal Article
%A Connolly, Francis X
%A Davis, James F
%T The surgery obstruction groups of the infinite dihedral group
%J Geometry & topology
%D 2004
%P 1043-1078
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1043/
%R 10.2140/gt.2004.8.1043
%F GT_2004_8_3_a2
Connolly, Francis X; Davis, James F. The surgery obstruction groups of the infinite dihedral group. Geometry & topology, Tome 8 (2004) no. 3, pp. 1043-1078. doi : 10.2140/gt.2004.8.1043. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1043/

[1] C Arf, Untersuchungen über quadratische Formen in Körpern der Charakteristik 2 I, J. Reine Angew. Math. 183 (1941) 148

[2] H Bass, Algebraic $K$–theory, W. A. Benjamin, New York-Amsterdam (1968)

[3] M Banagl, A Ranicki, Generalized Arf invariants in algebraic $L$–theory, Adv. Math. 199 (2006) 542

[4] W Browder, Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 65, Springer (1972)

[5] S E Cappell, Splitting obstructions for Hermitian forms and manifolds with $Z_{2}\subset \pi_{1}$, Bull. Amer. Math. Soc. 79 (1973) 909

[6] S E Cappell, On connected sums of manifolds, Topology 13 (1974) 395

[7] S E Cappell, Unitary nilpotent groups and Hermitian $K$–theory I, Bull. Amer. Math. Soc. 80 (1974) 1117

[8] S E Cappell, Manifolds with fundamental group a generalized free product. I, Bull. Amer. Math. Soc. 80 (1974) 1193

[9] S E Cappell, A splitting theorem for manifolds, Invent. Math. 33 (1976) 69

[10] F Connolly, T Koźniewski, $\mathrm{Nil}$ groups in $K$–theory and surgery theory, Forum Math. 7 (1995) 45

[11] F Connolly, A Ranicki, On the calculation of UNil, Adv. Math. 195 (2005) 205

[12] F T Farrell, The exponent of $\mathrm{UNil}$, Topology 18 (1979) 305

[13] F T Farrell, L E Jones, Isomorphism conjectures in algebraic $K$–theory, J. Amer. Math. Soc. 6 (1993) 249

[14] I Hambleton, L R Taylor, A guide to the calculation of the surgery obstruction groups for finite groups, from: "Surveys on surgery theory, Vol. 1", Ann. of Math. Stud. 145, Princeton Univ. Press (2000) 225

[15] M A Kervaire, J W Milnor, Groups of homotopy spheres I, Ann. of Math. $(2)$ 77 (1963) 504

[16] A A Ranicki, Letter to Frank Connolly (1996)

[17] A A Ranicki, Algebraic $L$–theory II: Laurent extensions, Proc. London Math. Soc. $(3)$ 27 (1973) 126

[18] A A Ranicki, Algebraic $L$–theory III: Twisted Laurent extensions, from: "Algebraic K-theory, III: Hermitian K-theory and geometric application (Proc. Conf. Seattle Res. Center, Battelle Memorial Inst., 1972)", Springer (1973)

[19] A A Ranicki, Algebraic $L$–theory IV: Polynomial extension rings, Comment. Math. Helv. 49 (1974) 137

[20] A Ranicki, The algebraic theory of surgery I: Foundations, Proc. London Math. Soc. $(3)$ 40 (1980) 87

[21] A Ranicki, Exact sequences in the algebraic theory of surgery, Mathematical Notes 26, Princeton University Press (1981)

[22] A Ranicki, High-dimensional knot theory, Springer Monographs in Mathematics, Springer (1998)

[23] W Scharlau, Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1985)

[24] J L Shaneson, Wall's surgery obstruction groups for $G\times Z$, Ann. of Math. $(2)$ 90 (1969) 296

[25] J Stallings, Whitehead torsion of free products, Ann. of Math. $(2)$ 82 (1965) 354

[26] F Waldhausen, Algebraic $K$–theory of generalized free products I, II, Ann. of Math. $(2)$ 108 (1978) 135

[27] C T C Wall, Surgery of non-simply-connected manifolds, Ann. of Math. $(2)$ 84 (1966) 217

[28] C T C Wall, Surgery on compact manifolds, Mathematical Surveys and Monographs 69, American Mathematical Society (1999)

Cité par Sources :