Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This paper computes the quadratic Witt groups (the Wall –groups) of the polynomial ring and the integral group ring of the infinite dihedral group, with various involutions. We show that some of these groups are infinite direct sums of cyclic groups of order 2 and 4. The techniques used are quadratic linking forms over and Arf invariants.
Connolly, Francis X 1 ; Davis, James F 2
@article{GT_2004_8_3_a2, author = {Connolly, Francis X and Davis, James F}, title = {The surgery obstruction groups of the infinite dihedral group}, journal = {Geometry & topology}, pages = {1043--1078}, publisher = {mathdoc}, volume = {8}, number = {3}, year = {2004}, doi = {10.2140/gt.2004.8.1043}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1043/} }
TY - JOUR AU - Connolly, Francis X AU - Davis, James F TI - The surgery obstruction groups of the infinite dihedral group JO - Geometry & topology PY - 2004 SP - 1043 EP - 1078 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1043/ DO - 10.2140/gt.2004.8.1043 ID - GT_2004_8_3_a2 ER -
Connolly, Francis X; Davis, James F. The surgery obstruction groups of the infinite dihedral group. Geometry & topology, Tome 8 (2004) no. 3, pp. 1043-1078. doi : 10.2140/gt.2004.8.1043. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1043/
[1] Untersuchungen über quadratische Formen in Körpern der Charakteristik 2 I, J. Reine Angew. Math. 183 (1941) 148
,[2] Algebraic $K$–theory, W. A. Benjamin, New York-Amsterdam (1968)
,[3] Generalized Arf invariants in algebraic $L$–theory, Adv. Math. 199 (2006) 542
, ,[4] Surgery on simply-connected manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 65, Springer (1972)
,[5] Splitting obstructions for Hermitian forms and manifolds with $Z_{2}\subset \pi_{1}$, Bull. Amer. Math. Soc. 79 (1973) 909
,[6] On connected sums of manifolds, Topology 13 (1974) 395
,[7] Unitary nilpotent groups and Hermitian $K$–theory I, Bull. Amer. Math. Soc. 80 (1974) 1117
,[8] Manifolds with fundamental group a generalized free product. I, Bull. Amer. Math. Soc. 80 (1974) 1193
,[9] A splitting theorem for manifolds, Invent. Math. 33 (1976) 69
,[10] $\mathrm{Nil}$ groups in $K$–theory and surgery theory, Forum Math. 7 (1995) 45
, ,[11] On the calculation of UNil, Adv. Math. 195 (2005) 205
, ,[12] The exponent of $\mathrm{UNil}$, Topology 18 (1979) 305
,[13] Isomorphism conjectures in algebraic $K$–theory, J. Amer. Math. Soc. 6 (1993) 249
, ,[14] A guide to the calculation of the surgery obstruction groups for finite groups, from: "Surveys on surgery theory, Vol. 1", Ann. of Math. Stud. 145, Princeton Univ. Press (2000) 225
, ,[15] Groups of homotopy spheres I, Ann. of Math. $(2)$ 77 (1963) 504
, ,[16] Letter to Frank Connolly (1996)
,[17] Algebraic $L$–theory II: Laurent extensions, Proc. London Math. Soc. $(3)$ 27 (1973) 126
,[18] Algebraic $L$–theory III: Twisted Laurent extensions, from: "Algebraic K-theory, III: Hermitian K-theory and geometric application (Proc. Conf. Seattle Res. Center, Battelle Memorial Inst., 1972)", Springer (1973)
,[19] Algebraic $L$–theory IV: Polynomial extension rings, Comment. Math. Helv. 49 (1974) 137
,[20] The algebraic theory of surgery I: Foundations, Proc. London Math. Soc. $(3)$ 40 (1980) 87
,[21] Exact sequences in the algebraic theory of surgery, Mathematical Notes 26, Princeton University Press (1981)
,[22] High-dimensional knot theory, Springer Monographs in Mathematics, Springer (1998)
,[23] Quadratic and Hermitian forms, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Springer (1985)
,[24] Wall's surgery obstruction groups for $G\times Z$, Ann. of Math. $(2)$ 90 (1969) 296
,[25] Whitehead torsion of free products, Ann. of Math. $(2)$ 82 (1965) 354
,[26] Algebraic $K$–theory of generalized free products I, II, Ann. of Math. $(2)$ 108 (1978) 135
,[27] Surgery of non-simply-connected manifolds, Ann. of Math. $(2)$ 84 (1966) 217
,[28] Surgery on compact manifolds, Mathematical Surveys and Monographs 69, American Mathematical Society (1999)
,Cité par Sources :