Weighted L2–cohomology of Coxeter groups based on barycentric subdivisons
Geometry & topology, Tome 8 (2004) no. 3, pp. 1032-1042.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Associated to any finite flag complex L there is a right-angled Coxeter group WL and a contractible cubical complex ΣL (the Davis complex) on which WL acts properly and cocompactly, and such that the link of each vertex is L. It follows that if L is a generalized homology sphere, then ΣL is a contractible homology manifold. We prove a generalized version of the Singer Conjecture (on the vanishing of the reduced weighted Lq2–cohomology above the middle dimension) for the right-angled Coxeter groups based on barycentric subdivisions in even dimensions. We also prove this conjecture for the groups based on the barycentric subdivision of the boundary complex of a simplex.

DOI : 10.2140/gt.2004.8.1032
Keywords: Coxeter group, aspherical manifold, barycentric subdivision, weighted $L^2$–cohomology, Tomei manifold, Singer conjecture

Okun, Boris 1

1 Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin 53201, USA
@article{GT_2004_8_3_a1,
     author = {Okun, Boris},
     title = {Weighted {L2{\textendash}cohomology} of {Coxeter} groups based on barycentric subdivisons},
     journal = {Geometry & topology},
     pages = {1032--1042},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1032},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1032/}
}
TY  - JOUR
AU  - Okun, Boris
TI  - Weighted L2–cohomology of Coxeter groups based on barycentric subdivisons
JO  - Geometry & topology
PY  - 2004
SP  - 1032
EP  - 1042
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1032/
DO  - 10.2140/gt.2004.8.1032
ID  - GT_2004_8_3_a1
ER  - 
%0 Journal Article
%A Okun, Boris
%T Weighted L2–cohomology of Coxeter groups based on barycentric subdivisons
%J Geometry & topology
%D 2004
%P 1032-1042
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1032/
%R 10.2140/gt.2004.8.1032
%F GT_2004_8_3_a1
Okun, Boris. Weighted L2–cohomology of Coxeter groups based on barycentric subdivisons. Geometry & topology, Tome 8 (2004) no. 3, pp. 1032-1042. doi : 10.2140/gt.2004.8.1032. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1032/

[1] M W Davis, Groups generated by reflections and aspherical manifolds not covered by Euclidean space, Ann. of Math. $(2)$ 117 (1983) 293

[2] M W Davis, Coxeter groups and aspherical manifolds, from: "Algebraic topology, Aarhus 1982 (Aarhus, 1982)", Lecture Notes in Math. 1051, Springer (1984) 197

[3] M W Davis, Some aspherical manifolds, Duke Math. J. 55 (1987) 105

[4] M W Davis, Nonpositive curvature and reflection groups, from: "Handbook of geometric topology", North-Holland (2002) 373

[5] M W Davis, J Dymara, T Januszkiewicz, B Okun, Weighted $L^2$–cohomology of Coxeter groups, Geom. Topol. 11 (2007) 47

[6] M W Davis, B Okun, $l^2$–homology of right-angled Coxeter groups based on barycentric subdivisions, Topology Appl. 140 (2004) 197

[7] J Dymara, Thin buildings, Geom. Topol. 10 (2006) 667

[8] C Tomei, The topology of isospectral manifolds of tridiagonal matrices, Duke Math. J. 51 (1984) 981

Cité par Sources :