Lens space surgeries and a conjecture of Goda and Teragaito
Geometry & topology, Tome 8 (2004) no. 3, pp. 1013-1031.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Using work of Ozsváth and Szabó, we show that if a nontrivial knot in S3 admits a lens space surgery with slope p, then p 4g + 3, where g is the genus of the knot. This is a close approximation to a bound conjectured by Goda and Teragaito.

DOI : 10.2140/gt.2004.8.1013
Keywords: lens space surgery, Seifert genus, Heegaard Floer homology

Rasmussen, Jacob 1

1 Department of Mathematics, Princeton University, Princeton, New Jersey 08544, USA
@article{GT_2004_8_3_a0,
     author = {Rasmussen, Jacob},
     title = {Lens space surgeries and a conjecture of {Goda} and {Teragaito}},
     journal = {Geometry & topology},
     pages = {1013--1031},
     publisher = {mathdoc},
     volume = {8},
     number = {3},
     year = {2004},
     doi = {10.2140/gt.2004.8.1013},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1013/}
}
TY  - JOUR
AU  - Rasmussen, Jacob
TI  - Lens space surgeries and a conjecture of Goda and Teragaito
JO  - Geometry & topology
PY  - 2004
SP  - 1013
EP  - 1031
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1013/
DO  - 10.2140/gt.2004.8.1013
ID  - GT_2004_8_3_a0
ER  - 
%0 Journal Article
%A Rasmussen, Jacob
%T Lens space surgeries and a conjecture of Goda and Teragaito
%J Geometry & topology
%D 2004
%P 1013-1031
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1013/
%R 10.2140/gt.2004.8.1013
%F GT_2004_8_3_a0
Rasmussen, Jacob. Lens space surgeries and a conjecture of Goda and Teragaito. Geometry & topology, Tome 8 (2004) no. 3, pp. 1013-1031. doi : 10.2140/gt.2004.8.1013. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1013/

[1] P Barkan, Sur les sommes de Dedekind et les fractions continues finies, C. R. Acad. Sci. Paris Sér. A-B 284 (1977)

[2] M Culler, C M Gordon, J Luecke, P B Shalen, Dehn surgery on knots, Ann. of Math. $(2)$ 125 (1987) 237

[3] K A Frøyshov, An inequality for the $h$–invariant in instanton Floer theory, Topology 43 (2004) 407

[4] H Goda, M Teragaito, Dehn surgeries on knots which yield lens spaces and genera of knots, Math. Proc. Cambridge Philos. Soc. 129 (2000) 501

[5] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)

[6] R Kirby, P Melvin, Dedekind sums, $\mu$–invariants and the signature cocycle, Math. Ann. 299 (1994) 231

[7] P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. $(2)$ 165 (2007) 457

[8] L Moser, Elementary surgery along a torus knot, Pacific J. Math. 38 (1971) 737

[9] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159

[10] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[11] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[12] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281

[13] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311

[14] H Rademacher, E Grosswald, Dedekind sums, The Carus Mathematical Monographs 16, The Mathematical Association of America, Washington, D.C. (1972)

[15] J Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[16] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1990)

[17] K Walker, An extension of Casson's invariant, Annals of Mathematics Studies 126, Princeton University Press (1992)

Cité par Sources :