Modular circle quotients and PL limit sets
Geometry & topology, Tome 8 (2004) no. 1, pp. 1-34.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We say that a collection Γ of geodesics in the hyperbolic plane H2 is a modular pattern if Γ is invariant under the modular group PSL2(Z), if there are only finitely many PSL2(Z)–equivalence classes of geodesics in Γ, and if each geodesic in Γ is stabilized by an infinite order subgroup of PSL2(Z). For instance, any finite union of closed geodesics on the modular orbifold H2PSL2(Z) lifts to a modular pattern. Let S1 be the ideal boundary of H2. Given two points p,q S1 we write p q if p and q are the endpoints of a geodesic in Γ. (In particular p p.) We will see in §3.2 that is an equivalence relation. We let QΓ = S1 be the quotient space. We call QΓ a modular circle quotient. In this paper we will give a sense of what modular circle quotients “look like” by realizing them as limit sets of piecewise-linear group actions.

DOI : 10.2140/gt.2004.8.1
Keywords: modular group, geodesic patterns, limit sets, representations

Schwartz, Richard Evan 1

1 Department of Mathematics, University of Maryland, College Park, MD 20742, USA
@article{GT_2004_8_1_a0,
     author = {Schwartz, Richard Evan},
     title = {Modular circle quotients and {PL} limit sets},
     journal = {Geometry & topology},
     pages = {1--34},
     publisher = {mathdoc},
     volume = {8},
     number = {1},
     year = {2004},
     doi = {10.2140/gt.2004.8.1},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1/}
}
TY  - JOUR
AU  - Schwartz, Richard Evan
TI  - Modular circle quotients and PL limit sets
JO  - Geometry & topology
PY  - 2004
SP  - 1
EP  - 34
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1/
DO  - 10.2140/gt.2004.8.1
ID  - GT_2004_8_1_a0
ER  - 
%0 Journal Article
%A Schwartz, Richard Evan
%T Modular circle quotients and PL limit sets
%J Geometry & topology
%D 2004
%P 1-34
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1/
%R 10.2140/gt.2004.8.1
%F GT_2004_8_1_a0
Schwartz, Richard Evan. Modular circle quotients and PL limit sets. Geometry & topology, Tome 8 (2004) no. 1, pp. 1-34. doi : 10.2140/gt.2004.8.1. http://geodesic.mathdoc.fr/articles/10.2140/gt.2004.8.1/

[1] L Bers, On boundaries of Teichmüller spaces and on Kleinian groups I, Ann. of Math. $(2)$ 91 (1970) 570

[2] M Bonk, O Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000) 266

[3] F P Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Mathematics (New York), John Wiley Sons (1987)

[4] B Maskit, Kleinian groups, Grundlehren der Mathematischen Wissenschaften 287, Springer (1988)

[5] J G Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer (1994)

[6] C Series, Geometric methods of symbolic coding, from: "Ergodic theory, symbolic dynamics, and hyperbolic spaces" (editors T Bedford, M Keane, C Series), Oxford Science Publications, The Clarendon Press Oxford University Press (1991) 125

[7] R E Schwartz, Degenerating the complex hyperbolic ideal triangle groups, Acta Math. 186 (2001) 105

[8] R E Schwartz, Circle quotients and string art, Topology 41 (2002) 495

[9] R Schwartz, Pappus' theorem and the modular group, Inst. Hautes Études Sci. Publ. Math. (1993)

Cité par Sources :