A non-abelian Seiberg–Witten invariant for integral homology 3–spheres
Geometry & topology, Tome 7 (2003) no. 2, pp. 965-999.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

A new diffeomorphism invariant of integral homology 3–spheres is defined using a non-abelian “quaternionic” version of the Seiberg–Witten equations.

DOI : 10.2140/gt.2003.7.965
Keywords: Seiberg–Witten, 3–manifolds

Lim, Yuhan 1

1 Dept of Mathematics, Univ of California, Santa Cruz, California 95064, USA
@article{GT_2003_7_2_a11,
     author = {Lim, Yuhan},
     title = {A non-abelian {Seiberg{\textendash}Witten} invariant for integral homology 3{\textendash}spheres},
     journal = {Geometry & topology},
     pages = {965--999},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2003},
     doi = {10.2140/gt.2003.7.965},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.965/}
}
TY  - JOUR
AU  - Lim, Yuhan
TI  - A non-abelian Seiberg–Witten invariant for integral homology 3–spheres
JO  - Geometry & topology
PY  - 2003
SP  - 965
EP  - 999
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.965/
DO  - 10.2140/gt.2003.7.965
ID  - GT_2003_7_2_a11
ER  - 
%0 Journal Article
%A Lim, Yuhan
%T A non-abelian Seiberg–Witten invariant for integral homology 3–spheres
%J Geometry & topology
%D 2003
%P 965-999
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.965/
%R 10.2140/gt.2003.7.965
%F GT_2003_7_2_a11
Lim, Yuhan. A non-abelian Seiberg–Witten invariant for integral homology 3–spheres. Geometry & topology, Tome 7 (2003) no. 2, pp. 965-999. doi : 10.2140/gt.2003.7.965. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.965/

[1] S Akbulut, J D Mccarthy, Casson's invariant for oriented homology 3–spheres, Mathematical Notes 36, Princeton University Press (1990)

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[3] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405

[4] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71

[5] H U Boden, C M Herald, The $\mathrm{SU}(3)$ Casson invariant for integral homology 3–spheres, J. Differential Geom. 50 (1998) 147

[6] H U Boden, C M Herald, P Kirk, An integer valued $\mathrm{SU}(3)$ Casson invariant, Math. Res. Lett. 8 (2001) 589

[7] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)

[8] P M N Feehan, T G Leness, $\mathrm PU(2)$ monopoles I: Regularity, Uhlenbeck compactness, and transversality, J. Differential Geom. 49 (1998) 265

[9] T Kato, Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften 132, Springer (1976)

[10] H B Lawson Jr., M L Michelsohn, Spin geometry, Princeton Mathematical Series 38, Princeton University Press (1989)

[11] Y Lim, The equivalence of Seiberg–Witten and Casson invariants for homology 3–spheres, Math. Res. Lett. 6 (1999) 631

[12] Y Lim, Seiberg–Witten invariants for 3–manifolds in the case $b_1=0$ or 1, Pacific J. Math. 195 (2000) 179

[13] Y Lim, Seiberg–Witten moduli spaces for 3–manifolds with cylindrical-end $T^2\times\mathbb{R}^+$, Commun. Contemp. Math. 2 (2000) 461

[14] C H Taubes, Casson's invariant and gauge theory, J. Differential Geom. 31 (1990) 547

[15] K K Uhlenbeck, Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982) 31

Cité par Sources :