Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
A new diffeomorphism invariant of integral homology 3–spheres is defined using a non-abelian “quaternionic” version of the Seiberg–Witten equations.
Lim, Yuhan 1
@article{GT_2003_7_2_a11, author = {Lim, Yuhan}, title = {A non-abelian {Seiberg{\textendash}Witten} invariant for integral homology 3{\textendash}spheres}, journal = {Geometry & topology}, pages = {965--999}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2003}, doi = {10.2140/gt.2003.7.965}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.965/} }
Lim, Yuhan. A non-abelian Seiberg–Witten invariant for integral homology 3–spheres. Geometry & topology, Tome 7 (2003) no. 2, pp. 965-999. doi : 10.2140/gt.2003.7.965. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.965/
[1] Casson's invariant for oriented homology 3–spheres, Mathematical Notes 36, Princeton University Press (1990)
, ,[2] Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[3] Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405
, , ,[4] Spectral asymmetry and Riemannian geometry III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71
, , ,[5] The $\mathrm{SU}(3)$ Casson invariant for integral homology 3–spheres, J. Differential Geom. 50 (1998) 147
, ,[6] An integer valued $\mathrm{SU}(3)$ Casson invariant, Math. Res. Lett. 8 (2001) 589
, , ,[7] The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)
, ,[8] $\mathrm PU(2)$ monopoles I: Regularity, Uhlenbeck compactness, and transversality, J. Differential Geom. 49 (1998) 265
, ,[9] Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften 132, Springer (1976)
,[10] Spin geometry, Princeton Mathematical Series 38, Princeton University Press (1989)
, ,[11] The equivalence of Seiberg–Witten and Casson invariants for homology 3–spheres, Math. Res. Lett. 6 (1999) 631
,[12] Seiberg–Witten invariants for 3–manifolds in the case $b_1=0$ or 1, Pacific J. Math. 195 (2000) 179
,[13] Seiberg–Witten moduli spaces for 3–manifolds with cylindrical-end $T^2\times\mathbb{R}^+$, Commun. Contemp. Math. 2 (2000) 461
,[14] Casson's invariant and gauge theory, J. Differential Geom. 31 (1990) 547
,[15] Connections with $L^{p}$ bounds on curvature, Comm. Math. Phys. 83 (1982) 31
,Cité par Sources :