Combination of convergence groups
Geometry & topology, Tome 7 (2003) no. 2, pp. 933-963.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We state and prove a combination theorem for relatively hyperbolic groups seen as geometrically finite convergence groups. For that, we explain how to contruct a boundary for a group that is an acylindrical amalgamation of relatively hyperbolic groups over a fully quasi-convex subgroup. We apply our result to Sela’s theory on limit groups and prove their relative hyperbolicity. We also get a proof of the Howson property for limit groups.

DOI : 10.2140/gt.2003.7.933
Keywords: relatively hyperbolic groups, geometrically finite convergence groups, combination theorem, limit groups

Dahmani, Francois 1

1 Forschungsinstitut für Mathematik, ETH Zentrum, Rämistrasse, 101, 8092 Zürich, Switzerland
@article{GT_2003_7_2_a10,
     author = {Dahmani, Francois},
     title = {Combination of convergence groups},
     journal = {Geometry & topology},
     pages = {933--963},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2003},
     doi = {10.2140/gt.2003.7.933},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.933/}
}
TY  - JOUR
AU  - Dahmani, Francois
TI  - Combination of convergence groups
JO  - Geometry & topology
PY  - 2003
SP  - 933
EP  - 963
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.933/
DO  - 10.2140/gt.2003.7.933
ID  - GT_2003_7_2_a10
ER  - 
%0 Journal Article
%A Dahmani, Francois
%T Combination of convergence groups
%J Geometry & topology
%D 2003
%P 933-963
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.933/
%R 10.2140/gt.2003.7.933
%F GT_2003_7_2_a10
Dahmani, Francois. Combination of convergence groups. Geometry & topology, Tome 7 (2003) no. 2, pp. 933-963. doi : 10.2140/gt.2003.7.933. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.933/

[1] A F Beardon, B Maskit, Limit points of Kleinian groups and finite sided fundamental polyhedra, Acta Math. 132 (1974) 1

[2] M Bestvina, Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996) 123

[3] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85

[4] M Bestvina, M Feighn, Addendum and correction to: “A combination theorem for negatively curved groups”, J. Differential Geom. 43 (1996) 783

[5] B H Bowditch, Geometrical finiteness with variable negative curvature, Duke Math. J. 77 (1995) 229

[6] B H Bowditch, Convergence groups and configuration spaces, from: "Geometric group theory down under (Canberra, 1996)", de Gruyter (1999) 23

[7] B H Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998) 643

[8] B H Bowditch, Relatively hyperbolic groups, preprint, Southampton, (1999)

[9] F Dahmani, Classifying spaces and boundaries for relatively hyperbolic groups, Proc. London Math. Soc. $(3)$ 86 (2003) 666

[10] F Dahmani, Les groupes relativement hyperboliques et leurs bords, Prépublication de l'Institut de Recherche Mathématique Avancée 2003/13, Université Louis Pasteur Département de Mathématique Institut de Recherche Mathématique Avancée (2003)

[11] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810

[12] F W Gehring, G J Martin, Discrete quasiconformal groups I, Proc. London Math. Soc. $(3)$ 55 (1987) 331

[13] R Gitik, On the combination theorem for negatively curved groups, Internat. J. Algebra Comput. 7 (1997) 267

[14] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[15] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[16] W Hurewicz, H Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press (1941)

[17] I Kapovich, Quasiconvexity and amalgams, Internat. J. Algebra Comput. 7 (1997) 771

[18] I Kapovich, The combination theorem and quasiconvexity, Internat. J. Algebra Comput. 11 (2001) 185

[19] I Kapovich, Subgroup properties of fully residually free groups, Trans. Amer. Math. Soc. 354 (2002) 335

[20] I Kapovich, Erratum to: “Subgroup properties of fully residually free groups”, Trans. Amer. Math. Soc. 355 (2003) 1295

[21] O Kharlampovich, A Myasnikov, Hyperbolic groups and free constructions, Trans. Amer. Math. Soc. 350 (1998) 571

[22] O Kharlampovich, A Myasnikov, Irreducible affine varieties over a free group I: Irreducibility of quadratic equations and Nullstellensatz, J. Algebra 200 (1998) 472

[23] Z Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997) 527

[24] Z Sela, Diophantine geometry over groups I: Makanin–Razborov diagrams, Publ. Math. Inst. Hautes Études Sci. (2001) 31

[25] Z Sela, Diophantine Geometry over Groups: A list of Research Problems

[26] H Short, Quasiconvexity and a theorem of Howson's, from: "Group theory from a geometrical viewpoint (Trieste, 1990)", World Sci. Publ., River Edge, NJ (1991) 168

[27] P Susskind, G A Swarup, Limit sets of geometrically finite hyperbolic groups, Amer. J. Math. 114 (1992) 233

[28] G A Swarup, Proof of a weak hyperbolization theorem, Q. J. Math. 51 (2000) 529

[29] A Szczepański, Relatively hyperbolic groups, Michigan Math. J. 45 (1998) 611

[30] P Tukia, Generalizations of Fuchsian and Kleinian groups, from: "First European Congress of Mathematics, Vol. II (Paris, 1992)", Progr. Math. 120, Birkhäuser (1994) 447

[31] P Tukia, Conical limit points and uniform convergence groups, J. Reine Angew. Math. 501 (1998) 71

[32] A Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004) 41

Cité par Sources :