The sigma orientation for analytic circle-equivariant elliptic cohomology
Geometry & topology, Tome 7 (2003) no. 1, pp. 91-153.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct a canonical Thom isomorphism in Grojnowski’s equivariant elliptic cohomology, for virtual T–oriented T–equivariant spin bundles with vanishing Borel-equivariant second Chern class, which is natural under pull-back of vector bundles and exponential under Whitney sum. It extends in the complex-analytic case the non-equivariant sigma orientation of Hopkins, Strickland, and the author. The construction relates the sigma orientation to the representation theory of loop groups and Looijenga’s weighted projective space, and sheds light even on the non-equivariant case. Rigidity theorems of Witten-Bott-Taubes including generalizations by Kefeng Liu follow.

DOI : 10.2140/gt.2003.7.91
Keywords: Sigma orientation, equivariant elliptic cohomolgy, rigidity

Ando, Matthew 1

1 Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
@article{GT_2003_7_1_a2,
     author = {Ando, Matthew},
     title = {The sigma orientation for analytic circle-equivariant elliptic cohomology},
     journal = {Geometry & topology},
     pages = {91--153},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     doi = {10.2140/gt.2003.7.91},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.91/}
}
TY  - JOUR
AU  - Ando, Matthew
TI  - The sigma orientation for analytic circle-equivariant elliptic cohomology
JO  - Geometry & topology
PY  - 2003
SP  - 91
EP  - 153
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.91/
DO  - 10.2140/gt.2003.7.91
ID  - GT_2003_7_1_a2
ER  - 
%0 Journal Article
%A Ando, Matthew
%T The sigma orientation for analytic circle-equivariant elliptic cohomology
%J Geometry & topology
%D 2003
%P 91-153
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.91/
%R 10.2140/gt.2003.7.91
%F GT_2003_7_1_a2
Ando, Matthew. The sigma orientation for analytic circle-equivariant elliptic cohomology. Geometry & topology, Tome 7 (2003) no. 1, pp. 91-153. doi : 10.2140/gt.2003.7.91. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.91/

[1] M Ando, M Basterra, The Witten genus and equivariant elliptic cohomology, Math. Z. 240 (2002) 787

[2] M Ando, M J Hopkins, N P Strickland, Elliptic spectra, the Witten genus and the theorem of the cube, Invent. Math. 146 (2001) 595

[3] M Ando, Power operations in elliptic cohomology and representations of loop groups, Trans. Amer. Math. Soc. 352 (2000) 5619

[4] A Borel, Topology of Lie groups and characteristic classes, Bull. Amer. Math. Soc. 61 (1955) 397

[5] J L Brylinski, Representations of loop groups, Dirac operators on loop space, and modular forms, Topology 29 (1990) 461

[6] R Bott, H Samelson, Applications of the theory of Morse to symmetric spaces, Amer. J. Math. 80 (1958) 964

[7] R Bott, C Taubes, On the rigidity theorems of Witten, J. Amer. Math. Soc. 2 (1989) 137

[8] D S Freed, E Witten, Anomalies in string theory with D-branes, Asian J. Math. 3 (1999) 819

[9] V Ginzburg, M Kapranov, É Vasserot, Langlands reciprocity for algebraic surfaces, Math. Res. Lett. 2 (1995) 147

[10] J P C Greenlees, Rational $\mathrm SO(3)$–equivariant cohomology theories, from: "Homotopy methods in algebraic topology (Boulder, CO, 1999)", Contemp. Math. 271, Amer. Math. Soc. (2001) 99

[11] I Grojnowski, Delocalized equivariant elliptic cohomology, unpublished manuscript (1994)

[12] M J Hopkins, Characters and elliptic cohomology, from: "Advances in homotopy theory (Cortona, 1988)", London Math. Soc. Lecture Note Ser. 139, Cambridge Univ. Press (1989) 87

[13] M J Hopkins, Topological modular forms, the Witten genus, and the theorem of the cube, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)", Birkhäuser (1995) 554

[14] V G Kac, Infinite-dimensional Lie algebras, Cambridge University Press (1985)

[15] K Liu, On modular invariance and rigidity theorems, J. Differential Geom. 41 (1995) 343

[16] E Looijenga, Root systems and elliptic curves, Invent. Math. 38 (1976/77) 17

[17] A Pressley, G Segal, Loop groups, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1986)

[18] D Quillen, The spectrum of an equivariant cohomology ring I, II, Ann. of Math. $(2)$ 94 (1971) 549, 573

[19] I Rosu, Equivariant elliptic cohomology and rigidity, Amer. J. Math. 123 (2001) 647

Cité par Sources :