Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using Furuta’s idea of finite dimensional approximation in Seiberg–Witten theory, we refine Seiberg–Witten Floer homology to obtain an invariant of homology 3–spheres which lives in the –equivariant graded suspension category. In particular, this gives a construction of Seiberg–Witten Floer homology that avoids the delicate transversality problems in the standard approach. We also define a relative invariant of four-manifolds with boundary which generalizes the Bauer–Furuta stable homotopy invariant of closed four-manifolds.
Manolescu, Ciprian 1
@article{GT_2003_7_2_a9, author = {Manolescu, Ciprian}, title = {Seiberg{\textendash}Witten{\textendash}Floer stable homotopy type of three-manifolds with b1 = 0}, journal = {Geometry & topology}, pages = {889--932}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2003}, doi = {10.2140/gt.2003.7.889}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.889/} }
TY - JOUR AU - Manolescu, Ciprian TI - Seiberg–Witten–Floer stable homotopy type of three-manifolds with b1 = 0 JO - Geometry & topology PY - 2003 SP - 889 EP - 932 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.889/ DO - 10.2140/gt.2003.7.889 ID - GT_2003_7_2_a9 ER -
Manolescu, Ciprian. Seiberg–Witten–Floer stable homotopy type of three-manifolds with b1 = 0. Geometry & topology, Tome 7 (2003) no. 2, pp. 889-932. doi : 10.2140/gt.2003.7.889. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.889/
Cité par Sources :