Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is one in a series of papers devoted to the foundations of Symplectic Field. We prove compactness results for moduli spaces of holomorphic curves arising in Symplectic Field Theory. The theorems generalize Gromov’s compactness theorem as well as compactness theorems in Floer homology theory and in contact geometry.
Bourgeois, Frederic 1 ; Eliashberg, Yakov 2 ; Hofer, Helmut 3 ; Wysocki, Kris 4 ; Zehnder, Eduard 5
@article{GT_2003_7_2_a8, author = {Bourgeois, Frederic and Eliashberg, Yakov and Hofer, Helmut and Wysocki, Kris and Zehnder, Eduard}, title = {Compactness results in {Symplectic} {Field} {Theory}}, journal = {Geometry & topology}, pages = {799--888}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2003}, doi = {10.2140/gt.2003.7.799}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.799/} }
TY - JOUR AU - Bourgeois, Frederic AU - Eliashberg, Yakov AU - Hofer, Helmut AU - Wysocki, Kris AU - Zehnder, Eduard TI - Compactness results in Symplectic Field Theory JO - Geometry & topology PY - 2003 SP - 799 EP - 888 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.799/ DO - 10.2140/gt.2003.7.799 ID - GT_2003_7_2_a8 ER -
%0 Journal Article %A Bourgeois, Frederic %A Eliashberg, Yakov %A Hofer, Helmut %A Wysocki, Kris %A Zehnder, Eduard %T Compactness results in Symplectic Field Theory %J Geometry & topology %D 2003 %P 799-888 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.799/ %R 10.2140/gt.2003.7.799 %F GT_2003_7_2_a8
Bourgeois, Frederic; Eliashberg, Yakov; Hofer, Helmut; Wysocki, Kris; Zehnder, Eduard. Compactness results in Symplectic Field Theory. Geometry & topology, Tome 7 (2003) no. 2, pp. 799-888. doi : 10.2140/gt.2003.7.799. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.799/
[1] A Morse–Bott approach to contact homology, from: "Symplectic and contact topology: interactions and perspectives (Toronto, ON/Montreal, QC, 2001)", Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55
,[2] The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969) 75
, ,[3] Legendrian submanifolds in $\mathbb{R}^{2n+1}$ and contact homology,
, , ,[4] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[5] Lagrangian intersections in contact geometry, Geom. Funct. Anal. 5 (1995) 244
, , ,[6] The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775
,[7] Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513
,[8] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[9] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515
,[10] The Weinstein conjecture in the presence of holomorphic spheres, Comm. Pure Appl. Math. 45 (1992) 583
, ,[11] Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag (1994)
, ,[12] Properties of pseudoholomorphic curves in symplectisations I: Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337
, , ,[13] Properties of pseudoholomorphic curves in symplectisation IV: Asymptotics with degeneracies, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 78
, , ,[14] Correction to: “Properties of pseudoholomorphic curves in symplectisations I: Asymptotics”, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998) 535
, , ,[15] The dynamics on three-dimensional strictly convex energy surfaces, Ann. of Math. $(2)$ 148 (1998) 197
, , ,[16] Properties of pseudoholomorphic curves in symplectizations III: Fredholm theory, from: "Topics in nonlinear analysis", Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381
, , ,[17] The asymptotic behavior of a finite energy plane, preprint, ETHZ (2001) 1
, , ,[18] Finite energy cylinders of small area, Ergodic Theory Dynam. Systems 22 (2002) 1451
, , ,[19] Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. $(2)$ 157 (2003) 125
, , ,[20] Gromov's compactness theorem for pseudo-holomorphic curves, Progress in Mathematics 151, Birkhäuser Verlag (1997)
,[21] Relative Gromov–Witten invariants, Ann. of Math. $(2)$ 157 (2003) 45
, ,[22] The symplectic sum formula for Gromov–Witten invariants, Ann. of Math. $(2)$ 159 (2004) 935
, ,[23] Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151
, ,[24] A degeneration formula of GW–invariants, J. Differential Geom. 60 (2002) 199
,[25] Gromov's Schwarz lemma as an estimate of the gradient for holomorphic curves, from: "Holomorphic curves in symplectic geometry", Progr. Math. 117, Birkhäuser (1994) 217
,[26] Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998)
, ,[27] $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)
, ,[28] On the Weil–Petersson geometry of the moduli space of curves, Amer. J. Math. 107 (1985) 969
,Cité par Sources :