Hyperbolic cone-manifolds with large cone-angles
Geometry & topology, Tome 7 (2003) no. 2, pp. 789-797.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that every closed oriented 3–manifold admits a hyperbolic cone–manifold structure with cone–angle arbitrarily close to 2π.

DOI : 10.2140/gt.2003.7.789
Keywords: hyperbolic cone–manifold, Kleinian groups

Souto, Juan 1

1 Mathematisches Institut, Universität Bonn, Beringstr. 1, 53115 Bonn, Germany
@article{GT_2003_7_2_a7,
     author = {Souto, Juan},
     title = {Hyperbolic cone-manifolds with large cone-angles},
     journal = {Geometry & topology},
     pages = {789--797},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2003},
     doi = {10.2140/gt.2003.7.789},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.789/}
}
TY  - JOUR
AU  - Souto, Juan
TI  - Hyperbolic cone-manifolds with large cone-angles
JO  - Geometry & topology
PY  - 2003
SP  - 789
EP  - 797
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.789/
DO  - 10.2140/gt.2003.7.789
ID  - GT_2003_7_2_a7
ER  - 
%0 Journal Article
%A Souto, Juan
%T Hyperbolic cone-manifolds with large cone-angles
%J Geometry & topology
%D 2003
%P 789-797
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.789/
%R 10.2140/gt.2003.7.789
%F GT_2003_7_2_a7
Souto, Juan. Hyperbolic cone-manifolds with large cone-angles. Geometry & topology, Tome 7 (2003) no. 2, pp. 789-797. doi : 10.2140/gt.2003.7.789. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.789/

[1] M Boileau, J Porti, Geometrization of 3–orbifolds of cyclic type, Astérisque (2001) 208

[2] F Bonahon, J P Otal, Laminations measurées de plissage des variétés hyperboliques de dimension 3, Ann. of Math. $(2)$ 160 (2004) 1013

[3] K Bromberg, Rigidity of geometrically finite hyperbolic cone-manifolds, Geom. Dedicata 105 (2004) 143

[4] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3

[5] C D Hodgson, S P Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1

[6] K Matsuzaki, M Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998)

[7] S P Kerckhoff, The measure of the limit set of the handlebody group, Topology 29 (1990) 27

[8] S Kojima, Deformations of hyperbolic 3–cone-manifolds, J. Differential Geom. 49 (1998) 469

[9] H Masur, Measured foliations and handlebodies, Ergodic Theory Dynam. Systems 6 (1986) 99

[10] J P Otal, Courants géodésiques et produits libres, Thèse d’Etat, Université Paris–Sud, Orsay (1988)

[11] J P Otal, Thurston's hyperbolization of Haken manifolds, from: "Surveys in differential geometry, Vol III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 77

[12] J Souto, Geometric structures on 3–manifolds and their deformations, Bonner Mathematische Schriften 342, Universität Bonn Mathematisches Institut (2001)

[13] W P Thurston, The Geometry and Topology of 3–manifolds, lecture notes (1979)

Cité par Sources :