Reidemeister–Turaev torsion modulo one of rational homology three-spheres
Geometry & topology, Tome 7 (2003) no. 2, pp. 773-787.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given an oriented rational homology 3–sphere M, it is known how to associate to any Spinc–structure σ on M two quadratic functions over the linking pairing. One quadratic function is derived from the reduction modulo 1 of the Reidemeister–Turaev torsion of (M,σ), while the other one can be defined using the intersection pairing of an appropriate compact oriented 4–manifold with boundary M. In this paper, using surgery presentations of the manifold M, we prove that those two quadratic functions coincide. Our proof relies on the comparison between two distinct combinatorial descriptions of Spinc–structures on M: Turaev’s charges vs Chern vectors.

DOI : 10.2140/gt.2003.7.773
Keywords: rational homology $3$–sphere, Reidemeister torsion, complex spin structure, quadratic function

Deloup, Florian 1 ; Massuyeau, Gwenael 2

1 Laboratoire Emile Picard, UMR 5580 CNRS/Univ. Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 04, France
2 Laboratoire Jean Leray, UMR 6629 CNRS/Univ. de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03, France
@article{GT_2003_7_2_a6,
     author = {Deloup, Florian and Massuyeau, Gwenael},
     title = {Reidemeister{\textendash}Turaev torsion modulo one of rational homology three-spheres},
     journal = {Geometry & topology},
     pages = {773--787},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2003},
     doi = {10.2140/gt.2003.7.773},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.773/}
}
TY  - JOUR
AU  - Deloup, Florian
AU  - Massuyeau, Gwenael
TI  - Reidemeister–Turaev torsion modulo one of rational homology three-spheres
JO  - Geometry & topology
PY  - 2003
SP  - 773
EP  - 787
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.773/
DO  - 10.2140/gt.2003.7.773
ID  - GT_2003_7_2_a6
ER  - 
%0 Journal Article
%A Deloup, Florian
%A Massuyeau, Gwenael
%T Reidemeister–Turaev torsion modulo one of rational homology three-spheres
%J Geometry & topology
%D 2003
%P 773-787
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.773/
%R 10.2140/gt.2003.7.773
%F GT_2003_7_2_a6
Deloup, Florian; Massuyeau, Gwenael. Reidemeister–Turaev torsion modulo one of rational homology three-spheres. Geometry & topology, Tome 7 (2003) no. 2, pp. 773-787. doi : 10.2140/gt.2003.7.773. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.773/

[1] M F Atiyah, Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. $(4)$ 4 (1971) 47

[2] F Deloup, On abelian quantum invariants of links in 3–manifolds, Math. Ann. 319 (2001) 759

[3] F Deloup, G Massuyeau, Quadratic functions and complex spin structures on three-manifolds, Topology 44 (2005) 509

[4] C Gille, Sur certains invariants récents en topologie de dimension 3, Thèse de Doctorat, Université de Nantes (1998)

[5] F Hirzebruch, A Riemann–Roch theorem for differentiable manifolds, Séminaire Bourbaki 177, Soc. Math. France (1995) 129

[6] D Johnson, Spin structures and quadratic forms on surfaces, J. London Math. Soc. $(2)$ 22 (1980) 365

[7] R C Kirby, The topology of 4–manifolds, Lecture Notes in Mathematics 1374, Springer (1989)

[8] H B Lawson Jr., M L Michelsohn, Spin geometry, Princeton Mathematical Series 38, Princeton University Press (1989)

[9] C Lescop, Global surgery formula for the Casson–Walker invariant, Annals of Mathematics Studies 140, Princeton University Press (1996)

[10] E Looijenga, J Wahl, Quadratic functions and smoothing surface singularities, Topology 25 (1986) 261

[11] L I Nicolaescu, The Reidemeister torsion of 3–manifolds, de Gruyter Studies in Mathematics 30, Walter de Gruyter Co. (2003)

[12] H Seifert, W Threlfall, A Textbook of Topology, Pure and Applied Mathematics 89, Academic Press (1980)

[13] V G Turaev, Reidemeister torsion and the Alexander polynomial, Mat. Sb. $($N.S.$)$ 18(66) (1976) 252

[14] V G Turaev, Torsion invariants of 3–manifolds (editors J Bryden, F Deloup, P Zvengrowski), PIMS Distinguished Chair Lectures, University of Calgary (2001)

[15] V G Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672

[16] V Turaev, Torsion invariants of $\mathrm{Spin}^c$–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679

[17] V Turaev, Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001)

[18] V G Turaev, Surgery formula for torsions and Seiberg–Witten invariants of 3–manifolds,

[19] V Turaev, Torsions of 3–dimensional manifolds, Progress in Mathematics 208, Birkhäuser Verlag (2002)

Cité par Sources :