Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given an oriented rational homology –sphere , it is known how to associate to any Spin–structure on two quadratic functions over the linking pairing. One quadratic function is derived from the reduction modulo of the Reidemeister–Turaev torsion of , while the other one can be defined using the intersection pairing of an appropriate compact oriented –manifold with boundary . In this paper, using surgery presentations of the manifold , we prove that those two quadratic functions coincide. Our proof relies on the comparison between two distinct combinatorial descriptions of Spin–structures on : Turaev’s charges vs Chern vectors.
Deloup, Florian 1 ; Massuyeau, Gwenael 2
@article{GT_2003_7_2_a6, author = {Deloup, Florian and Massuyeau, Gwenael}, title = {Reidemeister{\textendash}Turaev torsion modulo one of rational homology three-spheres}, journal = {Geometry & topology}, pages = {773--787}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2003}, doi = {10.2140/gt.2003.7.773}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.773/} }
TY - JOUR AU - Deloup, Florian AU - Massuyeau, Gwenael TI - Reidemeister–Turaev torsion modulo one of rational homology three-spheres JO - Geometry & topology PY - 2003 SP - 773 EP - 787 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.773/ DO - 10.2140/gt.2003.7.773 ID - GT_2003_7_2_a6 ER -
%0 Journal Article %A Deloup, Florian %A Massuyeau, Gwenael %T Reidemeister–Turaev torsion modulo one of rational homology three-spheres %J Geometry & topology %D 2003 %P 773-787 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.773/ %R 10.2140/gt.2003.7.773 %F GT_2003_7_2_a6
Deloup, Florian; Massuyeau, Gwenael. Reidemeister–Turaev torsion modulo one of rational homology three-spheres. Geometry & topology, Tome 7 (2003) no. 2, pp. 773-787. doi : 10.2140/gt.2003.7.773. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.773/
[1] Riemann surfaces and spin structures, Ann. Sci. École Norm. Sup. $(4)$ 4 (1971) 47
,[2] On abelian quantum invariants of links in 3–manifolds, Math. Ann. 319 (2001) 759
,[3] Quadratic functions and complex spin structures on three-manifolds, Topology 44 (2005) 509
, ,[4] Sur certains invariants récents en topologie de dimension 3, Thèse de Doctorat, Université de Nantes (1998)
,[5] A Riemann–Roch theorem for differentiable manifolds, Séminaire Bourbaki 177, Soc. Math. France (1995) 129
,[6] Spin structures and quadratic forms on surfaces, J. London Math. Soc. $(2)$ 22 (1980) 365
,[7] The topology of 4–manifolds, Lecture Notes in Mathematics 1374, Springer (1989)
,[8] Spin geometry, Princeton Mathematical Series 38, Princeton University Press (1989)
, ,[9] Global surgery formula for the Casson–Walker invariant, Annals of Mathematics Studies 140, Princeton University Press (1996)
,[10] Quadratic functions and smoothing surface singularities, Topology 25 (1986) 261
, ,[11] The Reidemeister torsion of 3–manifolds, de Gruyter Studies in Mathematics 30, Walter de Gruyter Co. (2003)
,[12] A Textbook of Topology, Pure and Applied Mathematics 89, Academic Press (1980)
, ,[13] Reidemeister torsion and the Alexander polynomial, Mat. Sb. $($N.S.$)$ 18(66) (1976) 252
,[14] Torsion invariants of 3–manifolds (editors J Bryden, F Deloup, P Zvengrowski), PIMS Distinguished Chair Lectures, University of Calgary (2001)
,[15] Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672
,[16] Torsion invariants of $\mathrm{Spin}^c$–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679
,[17] Introduction to combinatorial torsions, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag (2001)
,[18] Surgery formula for torsions and Seiberg–Witten invariants of 3–manifolds,
,[19] Torsions of 3–dimensional manifolds, Progress in Mathematics 208, Birkhäuser Verlag (2002)
,Cité par Sources :