Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Suppose is an almost simple group containing a subgroup isomorphic to the three-dimensional integer Heisenberg group. For example any finite index subgroup of is such a group. The main result of this paper is that every action of on a closed oriented surface by area preserving diffeomorphisms factors through a finite group.
Franks, John 1 ; Handel, Michael 2
@article{GT_2003_7_2_a5, author = {Franks, John and Handel, Michael}, title = {Area preserving group actions on surfaces}, journal = {Geometry & topology}, pages = {757--771}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2003}, doi = {10.2140/gt.2003.7.757}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.757/} }
Franks, John; Handel, Michael. Area preserving group actions on surfaces. Geometry & topology, Tome 7 (2003) no. 2, pp. 757-771. doi : 10.2140/gt.2003.7.757. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.757/
[1] Recurrence of co-cycles and random walks, J. London Math. Soc. $(2)$ 13 (1976) 486
,[2] Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107
, , ,[3] Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts 9, Cambridge University Press (1988)
, ,[4] Invariance of complementary domains of a fixed point set, Proc. Amer. Math. Soc. 91 (1984) 503
, ,[5] The Birkhoff–Lewis fixed point theorem and a conjecture of V I: Arnol'd, Invent. Math. 73 (1983) 33
, ,[6] Superrigidity and mapping class groups, Topology 37 (1998) 1169
, ,[7] Real-analytic actions of lattices, Invent. Math. 135 (1999) 273
, ,[8] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284
[9] Homology and dynamical systems, CBMS Regional Conference Series in Mathematics 49, Published for the Conference Board of the Mathematical Sciences, Washington, D.C. (1982)
,[10] Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems 8* (1988) 99
,[11] Generalizations of the Poincaré–Birkhoff theorem, Ann. of Math. $(2)$ 128 (1988) 139
,[12] Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992) 403
,[13] Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math. 2 (1996) 1
,[14] Rotation vectors and fixed points of area preserving surface diffeomorphisms, Trans. Amer. Math. Soc. 348 (1996) 2637
,[15] Rotation numbers for area preserving homeomorphisms of the open annulus, from: "Dynamical systems and related topics (Nagoya, 1990)", Adv. Ser. Dynam. Systems 9, World Sci. Publ., River Edge, NJ (1991) 123
,[16] Periodic points of Hamiltonian surface diffeomorphisms, Geom. Topol. 7 (2003) 713
, ,[17] Zero entropy surface diffeomorphisms, preprint
,[18] A fixed-point theorem for planar homeomorphisms, Topology 38 (1999) 235
,[19] Commuting homeomorphisms of $S^2$, Topology 31 (1992) 293
,[20] New proofs of some results of Nielsen, Adv. in Math. 56 (1985) 173
, ,[21] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer (1991)
,[22] Invariant subsets for area preserving homeomorphisms of surfaces, from: "Mathematical analysis and applications, Part B", Adv. in Math. Suppl. Stud. 7, Academic Press (1981) 531
,[23] Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends, from: "Selected studies: physics-astrophysics, mathematics, history of science", North-Holland (1982) 225
,[24] Growth of maps, distortion in groups and symplectic geometry, Invent. Math. 150 (2002) 655
,[25] On nilpotent groups of real analytic diffeomorphisms of the torus, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 317
,[26] Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris Sér. A-B 283 (1976)
,[27] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417
,[28] Arithmetic groups of higher $\mathbb{Q}$–rank cannot act on 1–manifolds, Proc. Amer. Math. Soc. 122 (1994) 333
,[29] Ergodic theory and semisimple groups, Monographs in Mathematics 81, Birkhäuser Verlag (1984)
,[30] Actions of semisimple groups and discrete subgroups, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986)", Amer. Math. Soc. (1987) 1247
,Cité par Sources :