Area preserving group actions on surfaces
Geometry & topology, Tome 7 (2003) no. 2, pp. 757-771.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Suppose G is an almost simple group containing a subgroup isomorphic to the three-dimensional integer Heisenberg group. For example any finite index subgroup of SL(3, ) is such a group. The main result of this paper is that every action of G on a closed oriented surface by area preserving diffeomorphisms factors through a finite group.

DOI : 10.2140/gt.2003.7.757
Keywords: group actions, Heisenberg group, almost simple

Franks, John 1 ; Handel, Michael 2

1 Department of Mathematics, Northwestern University, Evanston, Illinois 60208-2730, USA
2 Department of Mathematics, CUNY, Lehman College, Bronx, New York 10468, USA
@article{GT_2003_7_2_a5,
     author = {Franks, John and Handel, Michael},
     title = {Area preserving group actions on surfaces},
     journal = {Geometry & topology},
     pages = {757--771},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2003},
     doi = {10.2140/gt.2003.7.757},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.757/}
}
TY  - JOUR
AU  - Franks, John
AU  - Handel, Michael
TI  - Area preserving group actions on surfaces
JO  - Geometry & topology
PY  - 2003
SP  - 757
EP  - 771
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.757/
DO  - 10.2140/gt.2003.7.757
ID  - GT_2003_7_2_a5
ER  - 
%0 Journal Article
%A Franks, John
%A Handel, Michael
%T Area preserving group actions on surfaces
%J Geometry & topology
%D 2003
%P 757-771
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.757/
%R 10.2140/gt.2003.7.757
%F GT_2003_7_2_a5
Franks, John; Handel, Michael. Area preserving group actions on surfaces. Geometry & topology, Tome 7 (2003) no. 2, pp. 757-771. doi : 10.2140/gt.2003.7.757. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.757/

[1] G Atkinson, Recurrence of co-cycles and random walks, J. London Math. Soc. $(2)$ 13 (1976) 486

[2] J S Birman, A Lubotzky, J Mccarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107

[3] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts 9, Cambridge University Press (1988)

[4] M Brown, J M Kister, Invariance of complementary domains of a fixed point set, Proc. Amer. Math. Soc. 91 (1984) 503

[5] C C Conley, E Zehnder, The Birkhoff–Lewis fixed point theorem and a conjecture of V I: Arnol'd, Invent. Math. 73 (1983) 33

[6] B Farb, H Masur, Superrigidity and mapping class groups, Topology 37 (1998) 1169

[7] B Farb, P Shalen, Real-analytic actions of lattices, Invent. Math. 135 (1999) 273

[8] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284

[9] J M Franks, Homology and dynamical systems, CBMS Regional Conference Series in Mathematics 49, Published for the Conference Board of the Mathematical Sciences, Washington, D.C. (1982)

[10] J Franks, Recurrence and fixed points of surface homeomorphisms, Ergodic Theory Dynam. Systems 8* (1988) 99

[11] J Franks, Generalizations of the Poincaré–Birkhoff theorem, Ann. of Math. $(2)$ 128 (1988) 139

[12] J Franks, Geodesics on $S^2$ and periodic points of annulus homeomorphisms, Invent. Math. 108 (1992) 403

[13] J Franks, Area preserving homeomorphisms of open surfaces of genus zero, New York J. Math. 2 (1996) 1

[14] J Franks, Rotation vectors and fixed points of area preserving surface diffeomorphisms, Trans. Amer. Math. Soc. 348 (1996) 2637

[15] J Franks, Rotation numbers for area preserving homeomorphisms of the open annulus, from: "Dynamical systems and related topics (Nagoya, 1990)", Adv. Ser. Dynam. Systems 9, World Sci. Publ., River Edge, NJ (1991) 123

[16] J Franks, M Handel, Periodic points of Hamiltonian surface diffeomorphisms, Geom. Topol. 7 (2003) 713

[17] M Handel, Zero entropy surface diffeomorphisms, preprint

[18] M Handel, A fixed-point theorem for planar homeomorphisms, Topology 38 (1999) 235

[19] M Handel, Commuting homeomorphisms of $S^2$, Topology 31 (1992) 293

[20] M Handel, W P Thurston, New proofs of some results of Nielsen, Adv. in Math. 56 (1985) 173

[21] G A Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Springer (1991)

[22] J N Mather, Invariant subsets for area preserving homeomorphisms of surfaces, from: "Mathematical analysis and applications, Part B", Adv. in Math. Suppl. Stud. 7, Academic Press (1981) 531

[23] J N Mather, Topological proofs of some purely topological consequences of Carathéodory's theory of prime ends, from: "Selected studies: physics-astrophysics, mathematics, history of science", North-Holland (1982) 225

[24] L Polterovich, Growth of maps, distortion in groups and symplectic geometry, Invent. Math. 150 (2002) 655

[25] J C Rebelo, On nilpotent groups of real analytic diffeomorphisms of the torus, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 317

[26] J Tits, Systèmes générateurs de groupes de congruence, C. R. Acad. Sci. Paris Sér. A-B 283 (1976)

[27] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417

[28] D Witte, Arithmetic groups of higher $\mathbb{Q}$–rank cannot act on 1–manifolds, Proc. Amer. Math. Soc. 122 (1994) 333

[29] R J Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics 81, Birkhäuser Verlag (1984)

[30] R J Zimmer, Actions of semisimple groups and discrete subgroups, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986)", Amer. Math. Soc. (1987) 1247

Cité par Sources :