Calculus III: Taylor Series
Geometry & topology, Tome 7 (2003) no. 2, pp. 645-711.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study functors from spaces to spaces or spectra that preserve weak homotopy equivalences. For each such functor we construct a universal n–excisive approximation, which may be thought of as its n–excisive part. Homogeneous functors, meaning n–excisive functors with trivial (n 1)–excisive part, can be classified: they correspond to symmetric functors of n variables that are reduced and 1–excisive in each variable. We discuss some important examples, including the identity functor and Waldhausen’s algebraic K–theory.

DOI : 10.2140/gt.2003.7.645
Keywords: Homotopy functor, excision, Taylor tower

Goodwillie, Thomas G 1

1 Department of Mathematics, Brown University, Box 1917, Providence, Rhode Island 02912–0001, USA
@article{GT_2003_7_2_a3,
     author = {Goodwillie, Thomas G},
     title = {Calculus {III:} {Taylor} {Series}},
     journal = {Geometry & topology},
     pages = {645--711},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2003},
     doi = {10.2140/gt.2003.7.645},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.645/}
}
TY  - JOUR
AU  - Goodwillie, Thomas G
TI  - Calculus III: Taylor Series
JO  - Geometry & topology
PY  - 2003
SP  - 645
EP  - 711
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.645/
DO  - 10.2140/gt.2003.7.645
ID  - GT_2003_7_2_a3
ER  - 
%0 Journal Article
%A Goodwillie, Thomas G
%T Calculus III: Taylor Series
%J Geometry & topology
%D 2003
%P 645-711
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.645/
%R 10.2140/gt.2003.7.645
%F GT_2003_7_2_a3
Goodwillie, Thomas G. Calculus III: Taylor Series. Geometry & topology, Tome 7 (2003) no. 2, pp. 645-711. doi : 10.2140/gt.2003.7.645. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.645/

[1] G Arone, A generalization of Snaith-type filtration, Trans. Amer. Math. Soc. 351 (1999) 1123

[2] G Z Arone, W G Dwyer, Partition complexes, Tits buildings and symmetric products, Proc. London Math. Soc. $(3)$ 82 (2001) 229

[3] G Arone, M Kankaanrinta, A functorial model for iterated Snaith splitting with applications to calculus of functors, from: "Stable and unstable homotopy (Toronto, ON, 1996)", Fields Inst. Commun. 19, Amer. Math. Soc. (1998) 1

[4] G Arone, M Mahowald, The Goodwillie tower of the identity functor and the unstable periodic homotopy of spheres, Invent. Math. 135 (1999) 743

[5] M Bökstedt, G Carlsson, R Cohen, T Goodwillie, W C Hsiang, I Madsen, On the algebraic $K$–theory of simply connected spaces, Duke Math. J. 84 (1996) 541

[6] M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic $K$–theory of spaces, Invent. Math. 111 (1993) 465

[7] G E Carlsson, R L Cohen, T Goodwillie, W C Hsiang, The free loop space and the algebraic $K$–theory of spaces, $K$–Theory 1 (1987) 53

[8] B I Dundas, R Mccarthy, Stable $K$–theory and topological Hochschild homology, Ann. of Math. $(2)$ 140 (1994) 685

[9] T G Goodwillie, Calculus I: The first derivative of pseudoisotopy theory, $K$–Theory 4 (1990) 1

[10] T G Goodwillie, Calculus II: Analytic functors, $K$–Theory 5 (1991/92) 295

[11] B Johnson, The derivatives of homotopy theory, Trans. Amer. Math. Soc. 347 (1995) 1295

[12] L G Lewis Jr., J P May, M Steinberger, J E Mcclure, Equivariant stable homotopy theory, Lecture Notes in Mathematics 1213, Springer (1986)

[13] R Mccarthy, Relative algebraic $K$–theory and topological cyclic homology, Acta Math. 179 (1997) 197

[14] S Maclane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1971)

[15] F Waldhausen, Algebraic $K$–theory of spaces, from: "Algebraic and geometric topology (New Brunswick, N.J., 1983)", Lecture Notes in Math. 1126, Springer (1985) 318

[16] F Waldhausen, Algebraic $K$–theory of topological spaces II, from: "Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978)", Lecture Notes in Math. 763, Springer (1979) 356

[17] G W Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics 61, Springer (1978)

Cité par Sources :