Knot Floer homology and the four-ball genus
Geometry & topology, Tome 7 (2003) no. 2, pp. 615-639.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We use the knot filtration on the Heegaard Floer complex CF̂ to define an integer invariant τ(K) for knots. Like the classical signature, this invariant gives a homomorphism from the knot concordance group to . As such, it gives lower bounds for the slice genus (and hence also the unknotting number) of a knot; but unlike the signature, τ gives sharp bounds on the four-ball genera of torus knots. As another illustration, we calculate the invariant for several ten-crossing knots.

DOI : 10.2140/gt.2003.7.615
Keywords: Floer homology, knot concordance, signature, 4–ball genus

Ozsváth, Peter 1 ; Szabó, Zoltán 2

1 Department of Mathematics, Columbia University, New York 10025, USA
2 Department of Mathematics, Princeton University, New Jersey 08540, USA
@article{GT_2003_7_2_a1,
     author = {Ozsv\'ath, Peter and Szab\'o, Zolt\'an},
     title = {Knot {Floer} homology and the four-ball genus},
     journal = {Geometry & topology},
     pages = {615--639},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2003},
     doi = {10.2140/gt.2003.7.615},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.615/}
}
TY  - JOUR
AU  - Ozsváth, Peter
AU  - Szabó, Zoltán
TI  - Knot Floer homology and the four-ball genus
JO  - Geometry & topology
PY  - 2003
SP  - 615
EP  - 639
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.615/
DO  - 10.2140/gt.2003.7.615
ID  - GT_2003_7_2_a1
ER  - 
%0 Journal Article
%A Ozsváth, Peter
%A Szabó, Zoltán
%T Knot Floer homology and the four-ball genus
%J Geometry & topology
%D 2003
%P 615-639
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.615/
%R 10.2140/gt.2003.7.615
%F GT_2003_7_2_a1
Ozsváth, Peter; Szabó, Zoltán. Knot Floer homology and the four-ball genus. Geometry & topology, Tome 7 (2003) no. 2, pp. 615-639. doi : 10.2140/gt.2003.7.615. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.615/

[1] J O Berge, Some knots with surgeries giving lense spaces, unpublished manuscript

[2] M Boileau, C Weber, Le problème de J. Milnor sur le nombre gordien des n\oeuds algébriques, Enseign. Math. $(2)$ 30 (1984) 173

[3] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)

[4] C A Giller, A family of links and the Conway calculus, Trans. Amer. Math. Soc. 270 (1982) 75

[5] C M Gordon, R A Litherland, K Murasugi, Signatures of covering links, Canad. J. Math. 33 (1981) 381

[6] L H Kauffman, Formal knot theory, Mathematical Notes 30, Princeton University Press (1983)

[7] T Kawamura, The unknotting numbers of $10_{139}$ and $10_{152}$ are 4, Osaka J. Math. 35 (1998) 539

[8] P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces I, Topology 32 (1993) 773

[9] J Milnor, Singular points of complex hypersurfaces, Annals of Mathematics Studies 61, Princeton University Press (1968)

[10] B Owens, S Strle, Rational homology spheres and the four-ball genus of knots, Adv. Math. 200 (2006) 196

[11] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326

[12] P Ozsváth, Z Szabó, On knot Floer homology and lens space surgeries, Topology 44 (2005) 1281

[13] P Ozsváth, Z Szabó, The symplectic Thom conjecture, Ann. of Math. $(2)$ 151 (2000) 93

[14] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159

[15] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[16] P Ozsváth, Z Szabó, Holomorphic disk invariants for symplectic four-manifolds,

[17] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[18] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[19] P Ozsváth, Z Szabó, Heegaard Floer homology and alternating knots, Geom. Topol. 7 (2003) 225

[20] P Ozsváth, Z Szabó, Knot Floer homology, genus bounds, and mutation, Topology Appl. 141 (2004) 59

[21] J A Rasmussen, Floer homology of surgeries on two-bridge knots, Algebr. Geom. Topol. 2 (2002) 757

[22] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[23] D Rolfsen, Knots and links, Mathematics Lecture Series 7, Publish or Perish (1990)

[24] L Rudolph, Quasipositivity as an obstruction to sliceness, Bull. Amer. Math. Soc. $($N.S.$)$ 29 (1993) 51

[25] T Tanaka, Unknotting numbers of quasipositive knots, Topology Appl. 88 (1998) 239

[26] S Wolfram, The Mathematica book, Wolfram Media, Champaign, IL (1999)

Cité par Sources :