Equivariant Euler characteristics and K–homology Euler classes for proper cocompact G–manifolds
Geometry & topology, Tome 7 (2003) no. 2, pp. 569-613.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let G be a countable discrete group and let M be a smooth proper cocompact G-manifold without boundary. The Euler operator defines via Kasparov theory an element, called the equivariant Euler class, in the equivariant KO–homology of M. The universal equivariant Euler characteristic of M, which lives in a group UG(M), counts the equivariant cells of M, taking the component structure of the various fixed point sets into account. We construct a natural homomorphism from UG(M) to the equivariant KO-homology of M. The main result of this paper says that this map sends the universal equivariant Euler characteristic to the equivariant Euler class. In particular this shows that there are no “higher” equivariant Euler characteristics. We show that, rationally, the equivariant Euler class carries the same information as the collection of the orbifold Euler characteristics of the components of the L–fixed point sets ML, where L runs through the finite cyclic subgroups of G. However, we give an example of an action of the symmetric group S3 on the 3–sphere for which the equivariant Euler class has order 2, so there is also some torsion information.

DOI : 10.2140/gt.2003.7.569
Keywords: equivariant $K$–homology, de Rham operator, signature operator, Kasparov theory, equivariant Euler characteristic, fixed sets, cyclic subgroups, Burnside ring, Euler operator, equivariant Euler class, universal equivariant Euler characteristic

Lueck, Wolfgang 1 ; Rosenberg, Jonathan 2

1 Institut für Mathematik und Informatik, Westfälische Wilhelms-Universtität, Einsteinstr. 62, 48149 Münster, Germany
2 Department of Mathematics, University of Maryland, College Park, Maryland 20742, USA
@article{GT_2003_7_2_a0,
     author = {Lueck, Wolfgang and Rosenberg, Jonathan},
     title = {Equivariant {Euler} characteristics and {K{\textendash}homology} {Euler} classes for proper cocompact {G{\textendash}manifolds}},
     journal = {Geometry & topology},
     pages = {569--613},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2003},
     doi = {10.2140/gt.2003.7.569},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.569/}
}
TY  - JOUR
AU  - Lueck, Wolfgang
AU  - Rosenberg, Jonathan
TI  - Equivariant Euler characteristics and K–homology Euler classes for proper cocompact G–manifolds
JO  - Geometry & topology
PY  - 2003
SP  - 569
EP  - 613
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.569/
DO  - 10.2140/gt.2003.7.569
ID  - GT_2003_7_2_a0
ER  - 
%0 Journal Article
%A Lueck, Wolfgang
%A Rosenberg, Jonathan
%T Equivariant Euler characteristics and K–homology Euler classes for proper cocompact G–manifolds
%J Geometry & topology
%D 2003
%P 569-613
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.569/
%R 10.2140/gt.2003.7.569
%F GT_2003_7_2_a0
Lueck, Wolfgang; Rosenberg, Jonathan. Equivariant Euler characteristics and K–homology Euler classes for proper cocompact G–manifolds. Geometry & topology, Tome 7 (2003) no. 2, pp. 569-613. doi : 10.2140/gt.2003.7.569. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.569/

[1] H Abels, A universal proper $G$–space, Math. Z. 159 (1978) 143

[2] M F Atiyah, I M Singer, The index of elliptic operators III, Ann. of Math. $(2)$ 87 (1968) 546

[3] S Baaj, P Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans les $C^{*}$–modules hilbertiens, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983) 875

[4] B Blackadar, $K$–theory for operator algebras, Mathematical Sciences Research Institute Publications 5, Springer (1986)

[5] J F Davis, W Lück, Spaces over a category and assembly maps in isomorphism conjectures in $K$– and $L$–theory, $K$–Theory 15 (1998) 201

[6] T Tom Dieck, Transformation groups, de Gruyter Studies in Mathematics 8, Walter de Gruyter Co. (1987)

[7] J Dixmier, $C^*$–algebras, North-Holland Mathematical Library 15, North-Holland Publishing Co. (1977)

[8] M P Gaffney, A special Stokes's theorem for complete Riemannian manifolds, Ann. of Math. $(2)$ 60 (1954) 140

[9] N Higson, A primer on $KK$–theory, from: "Operator theory: operator algebras and applications, Part 1 (Durham, NH, 1988)", Proc. Sympos. Pure Math. 51, Amer. Math. Soc. (1990) 239

[10] D S Kahn, J Kaminker, C Schochet, Generalized homology theories on compact metric spaces, Michigan Math. J. 24 (1977) 203

[11] J Kaminker, J G Miller, Homotopy invariance of the analytic index of signature operators over $C^{*}$–algebras, J. Operator Theory 14 (1985) 113

[12] G G Kasparov, The operator $K$–functor and extensions of $C^{*}$–algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980) 571, 719

[13] G G Kasparov, Equivariant $KK$–theory and the Novikov conjecture, Invent. Math. 91 (1988) 147

[14] T Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer (1995)

[15] H B Lawson Jr., M L Michelsohn, Spin geometry, Princeton Mathematical Series 38, Princeton University Press (1989)

[16] W Lück, Transformation groups and algebraic $K$–theory, Lecture Notes in Mathematics 1408, Springer (1989)

[17] W Lück, $L^2$–invariants: theory and applications to geometry and $K$–theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 44, Springer (2002)

[18] W Lück, Chern characters for proper equivariant homology theories and applications to $K$– and $L$–theory, J. Reine Angew. Math. 543 (2002) 193

[19] W Lück, The relation between the Baum–Connes conjecture and the trace conjecture, Invent. Math. 149 (2002) 123

[20] W Lück, J Rosenberg, The equivariant Lefschetz fixed point theorem for proper cocompact $G$–manifolds, from: "High-dimensional manifold topology", World Sci. Publ., River Edge, NJ (2003) 322

[21] D Meintrup, On the type of the universal space for a family of subgroups, PhD thesis, Universität Münster (2000)

[22] J Rosenberg, Analytic Novikov for topologists, from: "Novikov conjectures, index theorems and rigidity, Vol. 1 (Oberwolfach, 1993)", London Math. Soc. Lecture Note Ser. 226, Cambridge Univ. Press (1995) 338

[23] J Rosenberg, The $K$–homology class of the Euler characteristic operator is trivial, Proc. Amer. Math. Soc. 127 (1999) 3467

[24] J Rosenberg, The $G$–signature theorem revisited, from: "Tel Aviv Topology Conference: Rothenberg Festschrift (1998)", Contemp. Math. 231, Amer. Math. Soc. (1999) 251

[25] J Rosenberg, The $K$–homology class of the equivariant Euler characteristic operator, unpublished preprint

[26] J Rosenberg, S Weinberger, Higher $G$–signatures for Lipschitz manifolds, $K$–Theory 7 (1993) 101

[27] J Rosenberg, S Weinberger, The signature operator at 2, Topology 45 (2006) 47

[28] J P Serre, Linear representations of finite groups, Graduate Texts in Mathematics 42, Springer (1977)

[29] S Waner, Y Wu, The local structure of tangent $G$–vector fields, Topology Appl. 23 (1986) 129

[30] S Waner, Y Wu, Equivariant $\mathrm{SKK}$ and vector field bordism, Topology Appl. 28 (1988) 29

Cité par Sources :