Arc operads and arc algebras
Geometry & topology, Tome 7 (2003) no. 1, pp. 511-568.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Several topological and homological operads based on families of projectively weighted arcs in bounded surfaces are introduced and studied. The spaces underlying the basic operad are identified with open subsets of a combinatorial compactification due to Penner of a space closely related to Riemann’s moduli space. Algebras over these operads are shown to be Batalin–Vilkovisky algebras, where the entire BV structure is realized simplicially. Furthermore, our basic operad contains the cacti operad up to homotopy. New operad structures on the circle are classified and combined with the basic operad to produce geometrically natural extensions of the algebraic structure of BV algebras, which are also computed.

DOI : 10.2140/gt.2003.7.511
Keywords: moduli of Surfaces, operads, Batalin–Vilkovisky algebras

Kaufmann, Ralph M 1 ; Livernet, Muriel 2 ; Penner, R C 3

1 Oklahoma State University, Stillwater, USA, Max Planck Institut für Mathematik, Bonn, Germany
2 Université Paris 13, France
3 University of Southern California, Los Angeles, USA
@article{GT_2003_7_1_a14,
     author = {Kaufmann, Ralph M and Livernet, Muriel and Penner, R C},
     title = {Arc operads and arc algebras},
     journal = {Geometry & topology},
     pages = {511--568},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     doi = {10.2140/gt.2003.7.511},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.511/}
}
TY  - JOUR
AU  - Kaufmann, Ralph M
AU  - Livernet, Muriel
AU  - Penner, R C
TI  - Arc operads and arc algebras
JO  - Geometry & topology
PY  - 2003
SP  - 511
EP  - 568
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.511/
DO  - 10.2140/gt.2003.7.511
ID  - GT_2003_7_1_a14
ER  - 
%0 Journal Article
%A Kaufmann, Ralph M
%A Livernet, Muriel
%A Penner, R C
%T Arc operads and arc algebras
%J Geometry & topology
%D 2003
%P 511-568
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.511/
%R 10.2140/gt.2003.7.511
%F GT_2003_7_1_a14
Kaufmann, Ralph M; Livernet, Muriel; Penner, R C. Arc operads and arc algebras. Geometry & topology, Tome 7 (2003) no. 1, pp. 511-568. doi : 10.2140/gt.2003.7.511. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.511/

[1] M Chas, D Sullivan, String topology, Ann. of Math. $(2)$ (to appear)

[2] R L Cohen, J D S Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773

[3] M Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. $(2)$ 78 (1963) 267

[4] E Getzler, Two-dimensional topological gravity and equivariant cohomology, Comm. Math. Phys. 163 (1994) 473

[5] A B Goncharov, Y I Manin, Multiple $\zeta$–motives and moduli spaces $\overline{\mathcal{M}}_{0,n}$, Compos. Math. 140 (2004) 1

[6] V Jones, Planar algebras I,

[7] R M Kaufmann, On several varieties of cacti and their relations, Algebr. Geom. Topol. 5 (2005) 237

[8] R M Kaufmann, Operads, moduli of surfaces and quantum algebras, from: "Woods Hole mathematics", Ser. Knots Everything 34, World Sci. Publ., Hackensack, NJ (2004) 133

[9] R M Kaufmann, On spineless cacti, Deligne's conjecture and Connes–Kreimer's Hopf algebra, Topology 46 (2007) 39

[10] R M Kaufmann, R C Penner, Homological arc operads, in preparation

[11] A Losev, Y Manin, New moduli spaces of pointed curves and pencils of flat connections, Michigan Math. J. 48 (2000) 443

[12] M Markl, S Shnider, J Stasheff, Operads in algebra, topology and physics, Mathematical Surveys and Monographs 96, American Mathematical Society (2002)

[13] R C Penner, The simplicial compactification of Riemann's moduli space, from: "Topology and Teichmüller spaces (Katinkulta, 1995)", World Sci. Publ., River Edge, NJ (1996) 237

[14] R C Penner, Decorated Teichmüller theory of bordered surfaces, Comm. Anal. Geom. 12 (2004) 793

[15] R C Penner, J L Harer, Combinatorics of train tracks, Annals of Mathematics Studies 125, Princeton University Press (1992)

[16] P Salvatore, N Wahl, Framed discs operads and Batalin–Vilkovisky algebras, Q. J. Math. 54 (2003) 213

[17] A A Voronov, Notes on universal algebra, from: "Graphs and patterns in mathematics and theoretical physics", Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 81

Cité par Sources :