Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The group of automorphisms of the polynomial
is isomorphic to
For , the –action on displays rich and varied dynamics. The action of preserves a Poisson structure defining a –invariant area form on each . For , the action of is properly discontinuous on the four contractible components of and ergodic on the compact component (which is empty if ). The contractible components correspond to Teichmüller spaces of (possibly singular) hyperbolic structures on a torus . For , the level set consists of characters of reducible representations and comprises two ergodic components corresponding to actions of on and respectively. For , the action of on is ergodic. Corresponding to the Fricke space of a three-holed sphere is a –invariant open subset whose components are permuted freely by a subgroup of index in . The level set intersects if and only if , in which case the –action on the complement is ergodic.
Goldman, William M 1
@article{GT_2003_7_1_a12, author = {Goldman, William M}, title = {The modular group action on real {SL(2){\textendash}characters} of a one-holed torus}, journal = {Geometry & topology}, pages = {443--486}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2003}, doi = {10.2140/gt.2003.7.443}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.443/} }
TY - JOUR AU - Goldman, William M TI - The modular group action on real SL(2)–characters of a one-holed torus JO - Geometry & topology PY - 2003 SP - 443 EP - 486 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.443/ DO - 10.2140/gt.2003.7.443 ID - GT_2003_7_1_a12 ER -
Goldman, William M. The modular group action on real SL(2)–characters of a one-holed torus. Geometry & topology, Tome 7 (2003) no. 1, pp. 443-486. doi : 10.2140/gt.2003.7.443. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.443/
[1] The real analytic theory of Teichmüller space, Lecture Notes in Mathematics 820, Springer (1980)
,[2] Fricke spaces, Adv. in Math. 62 (1986) 249
, ,[3] Markoff triples and quasi–Fuchsian groups, Proc. London Math. Soc. $(3)$ 77 (1998) 697
,[4] $\mathrm{SL}(2)$ representations of finitely presented groups, Contemporary Mathematics 187, American Mathematical Society (1995)
, ,[5] Geometry and spectra of compact Riemann surfaces, Progress in Mathematics 106, Birkhäuser (1992)
,[6] Varieties of group representations and splittings of 3–manifolds, Ann. of Math. $(2)$ 117 (1983) 109
, ,[7] Dynamical systems and semisimple groups: an introduction, Cambridge Tracts in Mathematics 126, Cambridge University Press (1998)
,[8] Über die Theorie der automorphen Modulgrupper, Nachr. Akad. Wiss. Göttingen (1896) 91
,[9] Vorlesungen der Automorphen Funktionen I, Teubner (1897)
, ,[10] Vorlesungen der Automorphen Funktionen II, Teubner (1912)
, ,[11] An algorithm for 2–generator Fuchsian groups, Michigan Math. J. 38 (1991) 13
, ,[12] Discontinuous groups and the Euler class, PhD thesis, University of California, Berkeley (1980)
,[13] Topological components of spaces of representations, Invent. Math. 93 (1988) 557
,[14] Ergodic theory on moduli spaces, Ann. of Math. $(2)$ 146 (1997) 475
,[15] An exposition of results of Fricke, in preparation
,[16] Homological action of the modular group on some cubic moduli spaces, Math. Res. Lett. 12 (2005) 575
, ,[17] Spaces of discrete groups, from: "Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975)", Academic Press (1977) 295
,[18] Induced automorphisms on Fricke characters of free groups, Trans. Amer. Math. Soc. 208 (1975) 41
,[19] Über Diskretheitsbedingungen und die Diophantische Gleichung $ax^{2}+by^{2}+cz^{2}=dxyz$, Arch. Math. $($Basel$)$ 34 (1980) 481
, ,[20] An introduction to Teichmüller spaces, Springer (1992)
, ,[21] Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985)
, ,[22] Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer (1977)
, ,[23] Rings of Fricke characters and automorphism groups of free groups, Math. Z. 170 (1980) 91
,[24] Combinatorial group theory, Dover Publications (2004)
, , ,[25] Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 17, Springer (1991)
,[26] Prescribed curvature and singularities of conformal metrics on Riemann surfaces, J. Math. Anal. Appl. 177 (1993) 287
,[27] Valuations, trees, and degenerations of hyperbolic structures I, Ann. of Math. $(2)$ 120 (1984) 401
, ,[28] Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966) 154
,[29] The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley Sons (1988)
,[30] Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1964) 385
,[31] Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927) 189
,[32] Dynamics of the modular group acting on $GL(2,\mathbb{R})$–characters of a once-punctured torus, PhD thesis, University of Maryland (2003)
,[33] The Dehn–Nielsen theorem, from: "Papers on group theory and topology by Max Dehn", Springer (1987)
,[34] Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991) 793
,[35] Ergodic theory and semisimple groups, Monographs in Mathematics 81, Birkhäuser Verlag (1984)
,Cité par Sources :