The modular group action on real SL(2)–characters of a one-holed torus
Geometry & topology, Tome 7 (2003) no. 1, pp. 443-486.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The group Γ of automorphisms of the polynomial

is isomorphic to

For t , the Γ–action on κ1(t) displays rich and varied dynamics. The action of Γ preserves a Poisson structure defining a Γ–invariant area form on each κ1(t) . For t < 2, the action of Γ is properly discontinuous on the four contractible components of κ1(t) and ergodic on the compact component (which is empty if t < 2). The contractible components correspond to Teichmüller spaces of (possibly singular) hyperbolic structures on a torus M¯. For t = 2, the level set κ1(t) consists of characters of reducible representations and comprises two ergodic components corresponding to actions of GL(2, ) on ()2 and 2 respectively. For 2 < t 18, the action of Γ on κ1(t) is ergodic. Corresponding to the Fricke space of a three-holed sphere is a Γ–invariant open subset Ω 3 whose components are permuted freely by a subgroup of index 6 in Γ. The level set κ1(t) intersects Ω if and only if t > 18, in which case the Γ–action on the complement (κ1(t) ) Ω is ergodic.

DOI : 10.2140/gt.2003.7.443
Keywords: surface, fundamental group, character variety, representation variety, mapping class group, ergodic action, proper action, hyperbolic structure with cone singularity, Fricke space, Teichmüller space

Goldman, William M 1

1 Mathematics Department, University of Maryland, College Park, Maryland 20742, USA
@article{GT_2003_7_1_a12,
     author = {Goldman, William M},
     title = {The modular group action on real {SL(2){\textendash}characters} of a one-holed torus},
     journal = {Geometry & topology},
     pages = {443--486},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     doi = {10.2140/gt.2003.7.443},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.443/}
}
TY  - JOUR
AU  - Goldman, William M
TI  - The modular group action on real SL(2)–characters of a one-holed torus
JO  - Geometry & topology
PY  - 2003
SP  - 443
EP  - 486
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.443/
DO  - 10.2140/gt.2003.7.443
ID  - GT_2003_7_1_a12
ER  - 
%0 Journal Article
%A Goldman, William M
%T The modular group action on real SL(2)–characters of a one-holed torus
%J Geometry & topology
%D 2003
%P 443-486
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.443/
%R 10.2140/gt.2003.7.443
%F GT_2003_7_1_a12
Goldman, William M. The modular group action on real SL(2)–characters of a one-holed torus. Geometry & topology, Tome 7 (2003) no. 1, pp. 443-486. doi : 10.2140/gt.2003.7.443. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.443/

[1] W Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics 820, Springer (1980)

[2] L Bers, F P Gardiner, Fricke spaces, Adv. in Math. 62 (1986) 249

[3] B H Bowditch, Markoff triples and quasi–Fuchsian groups, Proc. London Math. Soc. $(3)$ 77 (1998) 697

[4] G W Brumfiel, H M Hilden, $\mathrm{SL}(2)$ representations of finitely presented groups, Contemporary Mathematics 187, American Mathematical Society (1995)

[5] P Buser, Geometry and spectra of compact Riemann surfaces, Progress in Mathematics 106, Birkhäuser (1992)

[6] M Culler, P B Shalen, Varieties of group representations and splittings of 3–manifolds, Ann. of Math. $(2)$ 117 (1983) 109

[7] R Feres, Dynamical systems and semisimple groups: an introduction, Cambridge Tracts in Mathematics 126, Cambridge University Press (1998)

[8] R Fricke, Über die Theorie der automorphen Modulgrupper, Nachr. Akad. Wiss. Göttingen (1896) 91

[9] R Fricke, F Klein, Vorlesungen der Automorphen Funktionen I, Teubner (1897)

[10] R Fricke, F Klein, Vorlesungen der Automorphen Funktionen II, Teubner (1912)

[11] J Gilman, B Maskit, An algorithm for 2–generator Fuchsian groups, Michigan Math. J. 38 (1991) 13

[12] W Goldman, Discontinuous groups and the Euler class, PhD thesis, University of California, Berkeley (1980)

[13] W M Goldman, Topological components of spaces of representations, Invent. Math. 93 (1988) 557

[14] W M Goldman, Ergodic theory on moduli spaces, Ann. of Math. $(2)$ 146 (1997) 475

[15] W Goldman, An exposition of results of Fricke, in preparation

[16] W M Goldman, W D Neumann, Homological action of the modular group on some cubic moduli spaces, Math. Res. Lett. 12 (2005) 575

[17] W J Harvey, Spaces of discrete groups, from: "Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975)", Academic Press (1977) 295

[18] R D Horowitz, Induced automorphisms on Fricke characters of free groups, Trans. Amer. Math. Soc. 208 (1975) 41

[19] G Kern-Isberner, G Rosenberger, Über Diskretheitsbedingungen und die Diophantische Gleichung $ax^{2}+by^{2}+cz^{2}=dxyz$, Arch. Math. $($Basel$)$ 34 (1980) 481

[20] Y Imayoshi, M Taniguchi, An introduction to Teichmüller spaces, Springer (1992)

[21] A Lubotzky, A R Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985)

[22] R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 89, Springer (1977)

[23] W Magnus, Rings of Fricke characters and automorphism groups of free groups, Math. Z. 170 (1980) 91

[24] W Magnus, A Karrass, D Solitar, Combinatorial group theory, Dover Publications (2004)

[25] G A Margulis, Discrete subgroups of semisimple Lie groups, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 17, Springer (1991)

[26] R C Mcowen, Prescribed curvature and singularities of conformal metrics on Riemann surfaces, J. Math. Anal. Appl. 177 (1993) 287

[27] J W Morgan, P B Shalen, Valuations, trees, and degenerations of hyperbolic structures I, Ann. of Math. $(2)$ 120 (1984) 401

[28] C C Moore, Ergodicity of flows on homogeneous spaces, Amer. J. Math. 88 (1966) 154

[29] S Nag, The complex analytic theory of Teichmüller spaces, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley Sons (1988)

[30] J Nielsen, Die Isomorphismen der allgemeinen, unendlichen Gruppe mit zwei Erzeugenden, Math. Ann. 78 (1964) 385

[31] J Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927) 189

[32] G Stantchev, Dynamics of the modular group acting on $GL(2,\mathbb{R})$–characters of a once-punctured torus, PhD thesis, University of Maryland (2003)

[33] J Stillwell, The Dehn–Nielsen theorem, from: "Papers on group theory and topology by Max Dehn", Springer (1987)

[34] M Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991) 793

[35] R J Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics 81, Birkhäuser Verlag (1984)

Cité par Sources :