Stable Teichmüller quasigeodesics and ending laminations
Geometry & topology, Tome 7 (2003) no. 1, pp. 33-90.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We characterize which cobounded quasigeodesics in the Teichmüller space T of a closed surface are at bounded distance from a geodesic. More generally, given a cobounded lipschitz path γ in T, we show that γ is a quasigeodesic with finite Hausdorff distance from some geodesic if and only if the canonical hyperbolic plane bundle over γ is a hyperbolic metric space. As an application, for complete hyperbolic 3–manifolds N with finitely generated, freely indecomposable fundamental group and with bounded geometry, we give a new construction of model geometries for the geometrically infinite ends of N, a key step in Minsky’s proof of Thurston’s ending lamination conjecture for such manifolds.

DOI : 10.2140/gt.2003.7.33
Keywords: Teichmüller space, hyperbolic space, quasigeodesics, ending laminations

Mosher, Lee 1

1 Department of Mathematics and Computer Science, Rutgers University, Newark, New Jersey 07102, USA
@article{GT_2003_7_1_a1,
     author = {Mosher, Lee},
     title = {Stable {Teichm\"uller} quasigeodesics and ending laminations},
     journal = {Geometry & topology},
     pages = {33--90},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     doi = {10.2140/gt.2003.7.33},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.33/}
}
TY  - JOUR
AU  - Mosher, Lee
TI  - Stable Teichmüller quasigeodesics and ending laminations
JO  - Geometry & topology
PY  - 2003
SP  - 33
EP  - 90
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.33/
DO  - 10.2140/gt.2003.7.33
ID  - GT_2003_7_1_a1
ER  - 
%0 Journal Article
%A Mosher, Lee
%T Stable Teichmüller quasigeodesics and ending laminations
%J Geometry & topology
%D 2003
%P 33-90
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.33/
%R 10.2140/gt.2003.7.33
%F GT_2003_7_1_a1
Mosher, Lee. Stable Teichmüller quasigeodesics and ending laminations. Geometry & topology, Tome 7 (2003) no. 1, pp. 33-90. doi : 10.2140/gt.2003.7.33. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.33/

[1] L Bers, Fiber spaces over Teichmüller spaces, Acta. Math. 130 (1973) 89

[2] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85

[3] J Brock, B Farb, Curvature and rank of Teichmüller space, Amer. J. Math. 128 (2006) 1

[4] F Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. $(2)$ 124 (1986) 71

[5] B Bowditch, Stacks of hyperbolic spaces and ends of 3–manifolds, preprint (2002)

[6] J W Cannon, The theory of negatively curved spaces and groups, from: "Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989)", Oxford Sci. Publ., Oxford Univ. Press (1991) 315

[7] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts 9, Cambridge University Press (1988)

[8] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3

[9] D B A Epstein, A Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 113

[10] B Farb, L Mosher, Convex cocompact subgroups of mapping class groups, Geom. Topol. 6 (2002) 91

[11] S M Gersten, Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998) 1031

[12] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[13] J Hubbard, H Masur, Quadratic differentials and foliations, Acta Math. 142 (1979) 221

[14] M W Hirsch, C C Pugh, M Shub, Invariant manifolds, Lecture Notes in Mathematics 583, Springer (1977)

[15] Y N Minsky, Teichmüller geodesics and ends of hyperbolic 3–manifolds, Topology 32 (1993) 625

[16] Y N Minsky, On rigidity, limit sets, and end invariants of hyperbolic 3–manifolds, J. Amer. Math. Soc. 7 (1994) 539

[17] Y N Minsky, Quasi-projections in Teichmüller space, J. Reine Angew. Math. 473 (1996) 121

[18] Y N Minsky, Bounded geometry for Kleinian groups, Invent. Math. 146 (2001) 143

[19] H A Masur, Y N Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999) 103

[20] H A Masur, Y N Minsky, Unstable quasi-geodesics in Teichmüller space, from: "In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998)", Contemp. Math. 256, Amer. Math. Soc. (2000) 239

[21] H M Morse, A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc. 26 (1924) 25

[22] H A Masur, M Wolf, Teichmüller space is not Gromov hyperbolic, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995) 259

[23] G P Scott, Compact submanifolds of 3–manifolds, J. London Math. Soc. $(2)$ 7 (1973) 246

[24] D Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)", Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 465

[25] W P Thurston, The Geometry and Topology of 3–manifolds, lecture notes, Princeton University (1987)

[26] W P Thurston, Three-manifolds, foliations and circles I, preliminary version (1997)

Cité par Sources :