Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that a free period three action on the three-sphere is standard, ie, the quotient is homeomorphic to a lens space. We use a minimax argument involving sweepouts.
Maher, Joseph 1 ; Rubinstein, J Hyam 2
@article{GT_2003_7_1_a10, author = {Maher, Joseph and Rubinstein, J Hyam}, title = {Period three actions on the three-sphere}, journal = {Geometry & topology}, pages = {329--397}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2003}, doi = {10.2140/gt.2003.7.329}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.329/} }
Maher, Joseph; Rubinstein, J Hyam. Period three actions on the three-sphere. Geometry & topology, Tome 7 (2003) no. 1, pp. 329-397. doi : 10.2140/gt.2003.7.329. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.329/
[1] Quaternion actions on $S^{3}$, Amer. J. Math. 101 (1979) 1123
, ,[2] Zum Clifford–Kleinschen Raumproblem, Math. Ann. 95 (1926) 313
,[3] Semicharacteristic classes, Topology 12 (1973) 183
,[4] Fixed point free involutions on the 3–sphere, Ann. of Math. $(2)$ 72 (1960) 603
,[5] Groups which act on $S^n$ without fixed points, Amer. J. Math. 79 (1957) 623
,[6] Free involutions on lens spaces, Topology 20 (1981) 313
,[7] Free actions of $Z_{4}$ on $S^{3}$, Duke Math. J. 36 (1969) 749
,[8] Free $Z_{8}$ actions on $S^{3}$, Trans. Amer. Math. Soc. 181 (1973) 195
,[9] On 3–manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979) 129
,[10] Free actions of some finite groups on $S^{3}$ I, Math. Ann. 240 (1979) 165
,[11] The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401
,[12] Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes, Math. Ann. 104 (1931) 1
, ,[13] Three-dimensional geometry and topology Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)
,[14] Elliptic structures on 3–manifolds, London Mathematical Society Lecture Note Series 104, Cambridge University Press (1986)
,[15] Spaces of constant curvature, Publish or Perish (1984)
,Cité par Sources :