Period three actions on the three-sphere
Geometry & topology, Tome 7 (2003) no. 1, pp. 329-397.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that a free period three action on the three-sphere is standard, ie, the quotient is homeomorphic to a lens space. We use a minimax argument involving sweepouts.

DOI : 10.2140/gt.2003.7.329
Keywords: 3–manifold, 3–sphere, group action, spherical 3–manifold, lens space

Maher, Joseph 1 ; Rubinstein, J Hyam 2

1 Mathematics 253-37, California Institute of Technology, Pasadena, California 91125, USA
2 Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria 3010, Australia
@article{GT_2003_7_1_a10,
     author = {Maher, Joseph and Rubinstein, J Hyam},
     title = {Period three actions on the three-sphere},
     journal = {Geometry & topology},
     pages = {329--397},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     doi = {10.2140/gt.2003.7.329},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.329/}
}
TY  - JOUR
AU  - Maher, Joseph
AU  - Rubinstein, J Hyam
TI  - Period three actions on the three-sphere
JO  - Geometry & topology
PY  - 2003
SP  - 329
EP  - 397
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.329/
DO  - 10.2140/gt.2003.7.329
ID  - GT_2003_7_1_a10
ER  - 
%0 Journal Article
%A Maher, Joseph
%A Rubinstein, J Hyam
%T Period three actions on the three-sphere
%J Geometry & topology
%D 2003
%P 329-397
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.329/
%R 10.2140/gt.2003.7.329
%F GT_2003_7_1_a10
Maher, Joseph; Rubinstein, J Hyam. Period three actions on the three-sphere. Geometry & topology, Tome 7 (2003) no. 1, pp. 329-397. doi : 10.2140/gt.2003.7.329. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.329/

[1] B Evans, J Maxwell, Quaternion actions on $S^{3}$, Amer. J. Math. 101 (1979) 1123

[2] H Hopf, Zum Clifford–Kleinschen Raumproblem, Math. Ann. 95 (1926) 313

[3] R Lee, Semicharacteristic classes, Topology 12 (1973) 183

[4] G R Livesay, Fixed point free involutions on the 3–sphere, Ann. of Math. $(2)$ 72 (1960) 603

[5] J Milnor, Groups which act on $S^n$ without fixed points, Amer. J. Math. 79 (1957) 623

[6] R Myers, Free involutions on lens spaces, Topology 20 (1981) 313

[7] P M Rice, Free actions of $Z_{4}$ on $S^{3}$, Duke Math. J. 36 (1969) 749

[8] G X Ritter, Free $Z_{8}$ actions on $S^{3}$, Trans. Amer. Math. Soc. 181 (1973) 195

[9] J H Rubinstein, On 3–manifolds that have finite fundamental group and contain Klein bottles, Trans. Amer. Math. Soc. 251 (1979) 129

[10] J H Rubinstein, Free actions of some finite groups on $S^{3}$ I, Math. Ann. 240 (1979) 165

[11] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401

[12] W Threlfall, H Seifert, Topologische Untersuchung der Diskontinuitätsbereiche endlicher Bewegungsgruppen des dreidimensionalen sphärischen Raumes, Math. Ann. 104 (1931) 1

[13] W P Thurston, Three-dimensional geometry and topology Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)

[14] C B Thomas, Elliptic structures on 3–manifolds, London Mathematical Society Lecture Note Series 104, Cambridge University Press (1986)

[15] J A Wolf, Spaces of constant curvature, Publish or Perish (1984)

Cité par Sources :