A very short proof of Forester’s rigidity result
Geometry & topology, Tome 7 (2003) no. 1, pp. 321-328.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The deformation space of a simplicial G–tree T is the set of G–trees which can be obtained from T by some collapse and expansion moves, or equivalently, which have the same elliptic subgroups as T. We give a short proof of a rigidity result by Forester which gives a sufficient condition for a deformation space to contain an Aut(G)–invariant G–tree. This gives a sufficient condition for a JSJ splitting to be invariant under automorphisms of G. More precisely, the theorem claims that a deformation space contains at most one strongly slide-free G–tree, where strongly slide-free means the following: whenever two edges e1,e2 incident on a same vertex v are such that Ge1 Ge2, then e1 and e2 are in the same orbit under Gv.

DOI : 10.2140/gt.2003.7.321
Keywords: tree, graph of groups, folding, group of automorphisms

Guirardel, Vincent 1

1 Laboratoire E. Picard, UMR 5580, Bâtiment 1R2, Université Paul Sabatier, 118 rte de Narbonne, 31062 Toulouse cedex 4, France
@article{GT_2003_7_1_a9,
     author = {Guirardel, Vincent},
     title = {A very short proof of {Forester{\textquoteright}s} rigidity result},
     journal = {Geometry & topology},
     pages = {321--328},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     doi = {10.2140/gt.2003.7.321},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.321/}
}
TY  - JOUR
AU  - Guirardel, Vincent
TI  - A very short proof of Forester’s rigidity result
JO  - Geometry & topology
PY  - 2003
SP  - 321
EP  - 328
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.321/
DO  - 10.2140/gt.2003.7.321
ID  - GT_2003_7_1_a9
ER  - 
%0 Journal Article
%A Guirardel, Vincent
%T A very short proof of Forester’s rigidity result
%J Geometry & topology
%D 2003
%P 321-328
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.321/
%R 10.2140/gt.2003.7.321
%F GT_2003_7_1_a9
Guirardel, Vincent. A very short proof of Forester’s rigidity result. Geometry & topology, Tome 7 (2003) no. 1, pp. 321-328. doi : 10.2140/gt.2003.7.321. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.321/

[1] H Bass, R Jiang, Automorphism groups of tree actions and of graphs of groups, J. Pure Appl. Algebra 112 (1996) 109

[2] B H Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145

[3] M J Dunwoody, M E Sageev, JSJ–splittings for finitely presented groups over slender groups, Invent. Math. 135 (1999) 25

[4] M Forester, On uniqueness of JSJ decompositions of finitely generated groups, Comment. Math. Helv. 78 (2003) 740

[5] M Forester, Deformation and rigidity of simplicial group actions on trees, Geom. Topol. 6 (2002) 219

[6] K Fujiwara, P Papasoglu, JSJ–decompositions of finitely presented groups and complexes of groups, Geom. Funct. Anal. 16 (2006) 70

[7] N D Gilbert, J Howie, V Metaftsis, E Raptis, Tree actions of automorphism groups, J. Group Theory 3 (2000) 213

[8] V Guirardel, G Levitt, in preparation,

[9] A Karrass, A Pietrowski, D Solitar, Automorphisms of a free product with an amalgamated subgroup, from: "Contributions to group theory", Contemp. Math. 33, Amer. Math. Soc. (1984) 328

[10] G Levitt, Automorphisms of hyperbolic groups and graphs of groups, Geom. Dedicata 114 (2005) 49

[11] M R Pettet, The automorphism group of a graph product of groups, Comm. Algebra 27 (1999) 4691

[12] E Rips, Z Sela, Cyclic splittings of finitely presented groups and the canonical JSJ decomposition, Ann. of Math. $(2)$ 146 (1997) 53

[13] P Scott, G A Swarup, Regular neighbourhoods and canonical decompositions for groups, Astérisque (2003)

[14] J P Serre, Arbres, amalgames, $\mathrm{SL}_{2}$, Société Mathématique de France (1977)

Cité par Sources :