Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that, if is a compact oriented manifold of dimension , where , such that is not torsion-free, then there are infinitely many manifolds that are homotopic equivalent to but not homeomorphic to it. To show the infinite size of the structure set of , we construct a secondary invariant that coincides with the –invariant of Cheeger–Gromov. In particular, our result shows that the –invariant is not a homotopy invariant for the manifolds in question.
Chang, Stanley 1 ; Weinberger, Shmuel 2
@article{GT_2003_7_1_a8, author = {Chang, Stanley and Weinberger, Shmuel}, title = {On invariants of {Hirzebruch} and {Cheeger{\textendash}Gromov}}, journal = {Geometry & topology}, pages = {311--319}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2003}, doi = {10.2140/gt.2003.7.311}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.311/} }
TY - JOUR AU - Chang, Stanley AU - Weinberger, Shmuel TI - On invariants of Hirzebruch and Cheeger–Gromov JO - Geometry & topology PY - 2003 SP - 311 EP - 319 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.311/ DO - 10.2140/gt.2003.7.311 ID - GT_2003_7_1_a8 ER -
Chang, Stanley; Weinberger, Shmuel. On invariants of Hirzebruch and Cheeger–Gromov. Geometry & topology, Tome 7 (2003) no. 1, pp. 311-319. doi : 10.2140/gt.2003.7.311. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.311/
[1] Elliptic operators, discrete groups and von Neumann algebras, from: "Colloque “Analyse et Topologie” en l'Honneur de Henri Cartan (Orsay, 1974)", Soc. Math. France (1976)
,[2] Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[3] Spectral asymmetry and Riemannian geometry II, Math. Proc. Cambridge Philos. Soc. 78 (1975) 405
, , ,[4] Spectral asymmetry and Riemannian geometry III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71
, , ,[5] The topology of discrete groups, J. Pure Appl. Algebra 16 (1980) 1
, , ,[6] Fixed point free involutions on homotopy spheres, Tôhoku Math. J. $(2)$ 25 (1973) 69
, ,[7] On the characteristic numbers of complete manifolds of bounded curvature and finite volume, from: "Differential geometry and complex analysis", Springer (1985) 115
, ,[8] Bounds on the von Neumann dimension of $L^2$–cohomology and the Gauss–Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985) 1
, ,[9] Differentiable periodic maps, Ergebnisse der Mathematik und ihrer Grenzgebiete, N. F., Band 33, Academic Press (1964)
, ,[10] Rigidity for aspherical manifolds with $\pi_1{\subset}\mathrm{GL}_m(\mathbb{R})$, Asian J. Math. 2 (1998) 215
, ,[11] On the homotopy of nonnilpotent spaces, Math. Z. 178 (1981) 115
,[12] Operator $K$–theory for groups which act properly and isometrically on Hilbert space, Electron. Res. Announc. Amer. Math. Soc. 3 (1997) 131
, ,[13] Involutionen auf Mannigfaltigkeiten, from: "Proc. Conf. on Transformation Groups (New Orleans, La., 1967)", Springer (1968) 148
,[14] Homotopy invariance of relative eta-invariants and $C^*$–algebra $K$–theory, Electron. Res. Announc. Amer. Math. Soc. 4 (1998) 18
,[15] Involutions on manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete 59, Springer (1971)
,[16] $L^2$–invariants of regular coverings of compact manifolds and CW–complexes, from: "Handbook of geometric topology", North-Holland (2002) 735
,[17] $L^2$–invariants: theory and applications to geometry and $K$–theory, Ergebnisse der Mathematik und ihrer Grenzgebiete 44, Springer (2002)
,[18] Various $L^2$–signatures and a topological $L^2$–signature theorem, from: "High-dimensional manifold topology", World Sci. Publ., River Edge, NJ (2003) 362
, ,[19] Approximating $L^2$–signatures by their compact analogues, Forum Math. 17 (2005) 31
, ,[20] Spectral flow, eta invariants, and von Neumann algebras, J. Funct. Anal. 109 (1992) 442
,[21] von Neumann index theorems for manifolds with boundary, J. Differential Geom. 38 (1993) 315
,[22] Localization in quadratic $L$–theory, from: "Algebraic topology, Waterloo, 1978 (Proc. Conf., Univ. Waterloo, Waterloo, Ont., 1978)", Lecture Notes in Math. 741, Springer (1979) 102
,[23] Indextheorie für Überlangerungen, Diplomarbeit, Universität Bonn (1997)
,[24] Surgery on compact manifolds, London Mathematical Society Monographs 1, Academic Press (1970)
,[25] Homotopy invariance of $\eta$–invariants, Proc. Nat. Acad. Sci. U.S.A. 85 (1988) 5362
,Cité par Sources :