Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that there are algorithms to determine if a 3–manifold contains an essential lamination or a Reebless foliation.
Agol, Ian 1 ; Li, Tao 2
@article{GT_2003_7_1_a7, author = {Agol, Ian and Li, Tao}, title = {An algorithm to detect laminar 3{\textendash}manifolds}, journal = {Geometry & topology}, pages = {287--309}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2003}, doi = {10.2140/gt.2003.7.287}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.287/} }
Agol, Ian; Li, Tao. An algorithm to detect laminar 3–manifolds. Geometry & topology, Tome 7 (2003) no. 1, pp. 287-309. doi : 10.2140/gt.2003.7.287. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.287/
[1] Essential laminations in Seifert-fibered spaces, Topology 32 (1993) 61
,[2] Essential laminations and Haken normal form, Pacific J. Math. 168 (1995) 217
,[3] Essential laminations in $I$–bundles, Trans. Amer. Math. Soc. 349 (1997) 1463
,[4] Essential laminations in Seifert-fibered spaces: boundary behavior, Topology Appl. 95 (1999) 47
,[5] Graph manifolds and taut foliations, J. Differential Geom. 45 (1997) 446
, , ,[6] Foliations with one-sided branching, Geom. Dedicata 96 (2003) 1
,[7] Promoting essential laminations, Invent. Math. 166 (2006) 583
,[8] The geometry of $\mathbb{R}$–covered foliations, Geom. Topol. 4 (2000) 457
,[9] Laminations and groups of homeomorphisms of the circle, Invent. Math. 152 (2003) 149
, ,[10] Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441
, ,[11] Transverse foliations of Seifert bundles and self-homeomorphism of the circle, Comment. Math. Helv. 56 (1981) 638
, , ,[12] Laminar free hyperbolic 3–manifolds, Comment. Math. Helv. 82 (2007) 247
,[13] Incompressible surfaces via branched surfaces, Topology 23 (1984) 117
, ,[14] Fibrations over $S^1$ with pseudo-Anosov monodromy, from: "Travaux de Thurston sur les surfaces", Astérisque 66, Société Mathématique de France (1979) 251
,[15] Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445
,[16] Foliations and the topology of 3–manifolds III, J. Differential Geom. 26 (1987) 479
,[17] Convergence groups are Fuchsian groups, Ann. of Math. $(2)$ 136 (1992) 447
,[18] Problems in foliations and laminations, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1
,[19] Essential laminations and Kneser normal form, J. Differential Geom. 53 (1999) 517
,[20] Group negative curvature for 3–manifolds with genuine laminations, Geom. Topol. 2 (1998) 65
, ,[21] Essential laminations in 3–manifolds, Ann. of Math. $(2)$ 130 (1989) 41
, ,[22] Some results on surfaces in 3–manifolds, from: "Studies in Modern Topology", Math. Assoc. Amer. (distributed by Prentice-Hall, Englewood Cliffs, N.J.) (1968) 39
,[23]
, personal communication[24] An algorithm to decide if a 3–manifold is a Haken manifold, Topology 23 (1984) 195
, ,[25] 0–efficient triangulations of 3–manifolds, J. Differential Geom. 65 (2003) 61
, ,[26] Algorithms for the complete decomposition of a closed 3–manifold, Illinois J. Math. 39 (1995) 358
, ,[27] Rotation numbers of products of circle homeomorphisms, Math. Ann. 271 (1985) 381
, ,[28] Laminar branched surfaces in 3–manifolds, Geom. Topol. 6 (2002) 153
,[29] Degenerations of hyperbolic structures II: Measured laminations in 3–manifolds, Ann. of Math. $(2)$ 127 (1988) 403
, ,[30] Foliations transverse to fibers of Seifert manifolds, Comment. Math. Helv. 69 (1994) 155
,[31] The topology of foliations, Trudy Moskov. Mat. Obšč. 14 (1965) 248
,[32] Affine laminations and their stretch factors, Pacific J. Math. 182 (1998) 303
,[33] Infinitely many hyperbolic 3–manifolds which contain no Reebless foliation, J. Amer. Math. Soc. 16 (2003) 639
, , ,[34] An algorithm to recognize the 3–sphere, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)", Birkhäuser (1995) 601
,[35] The classification of essential laminations in Dehn surgeries on the figure-eight knot, PhD thesis, University of Michigan (2001)
,[36] Thin position and the recognition problem for $S^3$, Math. Res. Lett. 1 (1994) 613
,[37] A local construction of foliations for three-manifolds, from: "Differential geometry (Proc. Sympos. Pure Math., Vol XXVII, Stanford Univ., Stanford, Calif., 1973), Part 1", Amer. Math. Soc. (1975) 315
,[38] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417
,Cité par Sources :