Heegaard Floer homology and alternating knots
Geometry & topology, Tome 7 (2003) no. 1, pp. 225-254.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In an earlier paper, we introduced a knot invariant for a null-homologous knot K in an oriented three-manifold Y , which is closely related to the Heegaard Floer homology of Y . In this paper we investigate some properties of these knot homology groups for knots in the three-sphere. We give a combinatorial description for the generators of the chain complex and their gradings. With the help of this description, we determine the knot homology for alternating knots, showing that in this special case, it depends only on the signature and the Alexander polynomial of the knot (generalizing a result of Rasmussen for two-bridge knots). Applications include new restrictions on the Alexander polynomial of alternating knots.

DOI : 10.2140/gt.2003.7.225
Keywords: alternating knots, Kauffman states, Floer homology

Ozsváth, Peter 1 ; Szabó, Zoltán 2

1 Department of Mathematics, Columbia University, New York 10027, USA
2 Department of Mathematics, Princeton University, New Jersey 08540, USA
@article{GT_2003_7_1_a5,
     author = {Ozsv\'ath, Peter and Szab\'o, Zolt\'an},
     title = {Heegaard {Floer} homology and alternating knots},
     journal = {Geometry & topology},
     pages = {225--254},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     doi = {10.2140/gt.2003.7.225},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.225/}
}
TY  - JOUR
AU  - Ozsváth, Peter
AU  - Szabó, Zoltán
TI  - Heegaard Floer homology and alternating knots
JO  - Geometry & topology
PY  - 2003
SP  - 225
EP  - 254
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.225/
DO  - 10.2140/gt.2003.7.225
ID  - GT_2003_7_1_a5
ER  - 
%0 Journal Article
%A Ozsváth, Peter
%A Szabó, Zoltán
%T Heegaard Floer homology and alternating knots
%J Geometry & topology
%D 2003
%P 225-254
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.225/
%R 10.2140/gt.2003.7.225
%F GT_2003_7_1_a5
Ozsváth, Peter; Szabó, Zoltán. Heegaard Floer homology and alternating knots. Geometry & topology, Tome 7 (2003) no. 1, pp. 225-254. doi : 10.2140/gt.2003.7.225. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.225/

[1] J W Alexander, Topological invariants of knots and links, Trans. Amer. Math. Soc. 30 (1928) 275

[2] D Bar-Natan, On Khovanov's categorification of the Jones polynomial, Algebr. Geom. Topol. 2 (2002) 337

[3] G Burde, H Zieschang, Knots, de Gruyter Studies in Mathematics 5, Walter de Gruyter Co. (1985)

[4] R Crowell, Genus of alternating link types, Ann. of Math. $(2)$ 69 (1959) 258

[5] R H Crowell, Nonalternating links, Illinois J. Math. 3 (1959) 101

[6] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279

[7] Y Eliashberg, Classification of contact structures on $\mathbb{R}^3$, Internat. Math. Res. Notices (1993) 87

[8] N D Elkies, A characterization of the $\mathbb{Z}^n$ lattice, Math. Res. Lett. 2 (1995) 321

[9] R H Fox, Some problems in knot theory, from: "Topology of 3–manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961)", Prentice-Hall (1962) 168

[10] K A Frøyshov, The Seiberg–Witten equations and four-manifolds with boundary, Math. Res. Lett. 3 (1996) 373

[11] K A Frøyshov, An inequality for the $h$–invariant in instanton Floer theory, Topology 43 (2004) 407

[12] K A Frøyshov, Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525

[13] S Garoufalidis, A conjecture on Khovanov's invariants, Fund. Math. 184 (2004) 99

[14] E Giroux, lectures at Oberwohlfach (2001)

[15] C M Gordon, R A Litherland, On the signature of a link, Invent. Math. 47 (1978) 53

[16] L H Kauffman, Formal knot theory, Mathematical Notes 30, Princeton University Press (1983)

[17] L H Kauffman, On knots, Annals of Mathematics Studies 115, Princeton University Press (1987)

[18] M Khovanov, A categorification of the Jones polynomial, Duke Math. J. 101 (2000) 359

[19] E S Lee, The support of the Khovanov's invariants for alternating knots,

[20] W B R Lickorish, An introduction to knot theory, Graduate Texts in Mathematics 175, Springer (1997)

[21] J Milnor, Whitehead torsion, Bull. Amer. Math. Soc. 72 (1966) 358

[22] K Murasugi, On the genus of the alternating knot I, II, J. Math. Soc. Japan 10 (1958) 94, 235

[23] K Murasugi, On the Alexander polynomial of alternating algebraic knots, J. Austral. Math. Soc. Ser. A 39 (1985) 317

[24] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159

[25] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[26] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39

[27] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[28] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[29] P Ozsváth, Z Szabó, Knot Floer homology, genus bounds, and mutation, Topology Appl. 141 (2004) 59

[30] J A Rasmussen, Floer homology of surgeries on two-bridge knots, Algebr. Geom. Topol. 2 (2002) 757

[31] W P Thurston, H E Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975) 345

[32] V Turaev, Torsion invariants of $\mathrm{Spin}^c$–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679

Cité par Sources :