On the Floer homology of plumbed three-manifolds
Geometry & topology, Tome 7 (2003) no. 1, pp. 185-224.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We calculate the Heegaard Floer homologies for three-manifolds obtained by plumbings of spheres specified by certain graphs. Our class of graphs is sufficiently large to describe, for example, all Seifert fibered rational homology spheres. These calculations can be used to determine also these groups for other three-manifolds, including the product of a circle with a genus two surface.

DOI : 10.2140/gt.2003.7.185
Keywords: plumbing manifolds, Seifert fibered spaces, Floer homology

Ozsváth, Peter 1 ; Szabó, Zoltán 2

1 Department of Mathematics, Columbia University, New York 10027, USA
2 Department of Mathematics, Princeton University, New Jersey 08540, USA
@article{GT_2003_7_1_a4,
     author = {Ozsv\'ath, Peter and Szab\'o, Zolt\'an},
     title = {On the {Floer} homology of plumbed three-manifolds},
     journal = {Geometry & topology},
     pages = {185--224},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2003},
     doi = {10.2140/gt.2003.7.185},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.185/}
}
TY  - JOUR
AU  - Ozsváth, Peter
AU  - Szabó, Zoltán
TI  - On the Floer homology of plumbed three-manifolds
JO  - Geometry & topology
PY  - 2003
SP  - 185
EP  - 224
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.185/
DO  - 10.2140/gt.2003.7.185
ID  - GT_2003_7_1_a4
ER  - 
%0 Journal Article
%A Ozsváth, Peter
%A Szabó, Zoltán
%T On the Floer homology of plumbed three-manifolds
%J Geometry & topology
%D 2003
%P 185-224
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.185/
%R 10.2140/gt.2003.7.185
%F GT_2003_7_1_a4
Ozsváth, Peter; Szabó, Zoltán. On the Floer homology of plumbed three-manifolds. Geometry & topology, Tome 7 (2003) no. 1, pp. 185-224. doi : 10.2140/gt.2003.7.185. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.185/

[1] S K Donaldson, Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002)

[2] N D Elkies, A characterization of the $\mathbb{Z}^n$ lattice, Math. Res. Lett. 2 (1995) 321

[3] R Fintushel, R J Stern, Instanton homology of Seifert fibred homology three spheres, Proc. London Math. Soc. $(3)$ 61 (1990) 109

[4] K A Frøyshov, The Seiberg–Witten equations and four-manifolds with boundary, Math. Res. Lett. 3 (1996) 373

[5] K A Frøyshov, An inequality for the $h$–invariant in instanton Floer theory, Topology 43 (2004) 407

[6] R E Gompf, A I Stipsicz, 4–manifolds and Kirby calculus, Graduate Studies in Mathematics 20, American Mathematical Society (1999)

[7] P A Kirk, E P Klassen, Representation spaces of Seifert fibered homology spheres, Topology 30 (1991) 77

[8] P B Kronheimer, T S Mrowka, The genus of embedded surfaces in the projective plane, Math. Res. Lett. 1 (1994) 797

[9] J W Morgan, The Seiberg–Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes 44, Princeton University Press (1996)

[10] T Mrowka, P Ozsváth, B Yu, Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997) 685

[11] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326

[12] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159

[13] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[14] P Ozsváth, Z Szabó, Holomorphic disk invariants for symplectic four-manifolds,

[15] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[16] P Ozsváth, Z Szabó, On Heegaard Floer homology and Seifert fibered surgeries, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry (2004) 181

[17] E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769

Cité par Sources :