Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be an odd regular prime, and assume that the Lichtenbaum–Quillen conjecture holds for at . Then the –primary homotopy type of the smooth Whitehead spectrum is described. A suspended copy of the cokernel-of-J spectrum splits off, and the torsion homotopy of the remainder equals the torsion homotopy of the fiber of the restricted -transfer map . The homotopy groups of are determined in a range of degrees, and the cohomology of is expressed as an -module in all degrees, up to an extension. These results have geometric topological interpretations, in terms of spaces of concordances or diffeomorphisms of highly connected, high dimensional compact smooth manifolds.
Rognes, John 1
@article{GT_2003_7_1_a3, author = {Rognes, John}, title = {The smooth {Whitehead} spectrum of a point at odd regular primes}, journal = {Geometry & topology}, pages = {155--184}, publisher = {mathdoc}, volume = {7}, number = {1}, year = {2003}, doi = {10.2140/gt.2003.7.155}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.155/} }
Rognes, John. The smooth Whitehead spectrum of a point at odd regular primes. Geometry & topology, Tome 7 (2003) no. 1, pp. 155-184. doi : 10.2140/gt.2003.7.155. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.155/
[1] Lectures on generalised cohomology, from: "Category Theory, Homology Theory and their Applications, III (Battelle Institute Conference, Seattle, Wash., 1968, Vol. Three)", Springer (1969) 1
,[2] Uniqueness of $B\mathrm{SO}$, Math. Proc. Cambridge Philos. Soc. 80 (1976) 475
, ,[3] On the homotopy groups of $A(X)$, Proc. Amer. Math. Soc. 98 (1986) 495
,[4] $p$–adic étale cohomology, Inst. Hautes Études Sci. Publ. Math. (1986) 107
, ,[5] The cyclotomic trace and algebraic $K$–theory of spaces, Invent. Math. 111 (1993) 465
, , ,[6] Topological cyclic homology of the integers, Astérisque (1994) 7, 57
, ,[7] Algebraic $K$–theory of local number fields: the unramified case, from: "Prospects in topology (Princeton, NJ, 1994)", Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 28
, ,[8] The localization of spectra with respect to homology, Topology 18 (1979) 257
,[9] Relative $K$–theory and topological cyclic homology, Acta Math. 179 (1997) 223
,[10] Twisted homological stability for general linear groups, Ann. of Math. $(2)$ 111 (1980) 239
,[11] Algebraic and etale $K$–theory, Trans. Amer. Math. Soc. 292 (1985) 247
, ,[12] Topological models for arithmetic, Topology 33 (1994) 1
, ,[13] On the $K$–theory spectrum of a ring of algebraic integers, $K$–Theory 14 (1998) 201
, ,[14] On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 325
, ,[15] On the $K$–theory of finite algebras over Witt vectors of perfect fields, Topology 36 (1997) 29
, ,[16] When is $\mathrm{Br}(X)=\mathrm{Br}^{\prime} (X)$?, from: "Brauer groups in ring theory and algebraic geometry (Wilrijk, 1981)", Lecture Notes in Math. 917, Springer (1982) 231
,[17] The stability theorem for smooth pseudoisotopies, $K$–Theory 2 (1988)
,[18] The fiber of the linearization map $A(*){\rightarrow}K(\mathbb{Z})$, Topology 36 (1997) 829
, ,[19] $Im(J)$–theory for torsion-free spaces: the complex projective space as an example, Revised version of Habilitationsschrift, Bonn, (1979)
,[20] On the values of zeta and $L$–functions I, Ann. of Math. $(2)$ 96 (1972) 338
,[21] The classifying spaces for surgery and cobordism of manifolds, Annals of Mathematics Studies 92, Princeton University Press (1979)
, ,[22] The circle transfer and $K$–theory, from: "Geometry and topology: Aarhus (1998)", Contemp. Math. 258, Amer. Math. Soc. (2000) 307
, ,[23] Infinite loop maps in geometric topology, Math. Proc. Cambridge Philos. Soc. 81 (1977) 399
, , ,[24] The stable mapping class group and $Q(\mathbb{C}\mathrm{P}^{\infty}_+)$, Invent. Math. 145 (2001) 509
, ,[25] $E_{\infty }$ ring spaces and $E_{\infty }$ ring spectra, Lecture Notes in Mathematics 577, Springer (1977) 268
,[26] Étale cohomology, Princeton Mathematical Series 33, Princeton University Press (1980)
,[27] Arithmetic duality theorems, Perspectives in Mathematics 1, Academic Press (1986)
,[28] Localization with respect to $K$–theory, J. Pure Appl. Algebra 10 (1977/78) 201
,[29] On $p$–adic topological $K$–theory, from: "Algebraic $K$–theory and algebraic topology (Lake Louise, AB, 1991)", NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 407, Kluwer Acad. Publ. (1993) 197
,[30] Some stable homotopy of complex projective space, Topology 7 (1968) 179
,[31] The $S^{1}$–transfer map and homotopy groups of suspended complex projective spaces, Math. J. Okayama Univ. 24 (1982) 179
,[32] Higher algebraic $K$–theory I, from: "Algebraic $K$–theory, I: Higher $K$–theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972)", Springer (1973)
,[33] Finite generation of the groups $K_{i}$ of rings of algebraic integers, from: "Algebraic $K$–theory, I: Higher $K$–theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972)", Lecture Notes in Math. 341, Springer (1973) 179
,[34] Higher algebraic $K$–theory, from: "Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1", Canad. Math. Congress, Montreal, Que. (1975) 171
,[35] Letter from Quillen to Milnor on $\mathrm{Im}(\pi_{i}0{\rightarrow}\pi_{i}^s{\rightarrow}K_{i}\mathbb{Z})$, from: "Algebraic $K$–theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976)", Lecture Notes in Math. 551, Springer (1976) 182
,[36] Complex cobordism and stable homotopy groups of spheres, Pure and Applied Mathematics 121, Academic Press (1986)
,[37] Two-primary algebraic $K$–theory of pointed spaces, Topology 41 (2002) 873
,[38] Two-primary algebraic $K$–theory of rings of integers in number fields, J. Amer. Math. Soc. 13 (2000) 1
, ,[39] Cohomology operations, Annals of Mathematics Studies 50, Princeton University Press (1962)
,[40] Bloch–Kato conjecture and motivic cohomology with finite coefficients, from: "The arithmetic and geometry of algebraic cycles (Banff, AB, 1998)", NATO Sci. Ser. C Math. Phys. Sci. 548, Kluwer Acad. Publ. (2000) 117
, ,[41] Duality theorems in Galois cohomology over number fields, from: "Proc Internat. Congr. Mathematicians (Stockholm, 1962)", Inst. Mittag-Leffler (1963) 288
,[42] A topological proof of theorems of Bott and Borel–Hirzebruch for homotopy groups of unitary groups, Mem. Coll. Sci. Univ. Kyoto. Ser. A. Math. 32 (1959) 103
,[43] The Milnor Conjecture, preprint (1996)
,[44] On 2–torsion in motivic cohomology, preprint (2001)
,[45] Algebraic $K$–theory of topological spaces I, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 1", Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 35
,[46] Algebraic $K$–theory of topological spaces II, from: "Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978)", Lecture Notes in Math. 763, Springer (1979) 356
,[47] Algebraic $K$–theory of spaces, a manifold approach, from: "Current trends in algebraic topology, Part 1 (London, Ont., 1981)", CMS Conf. Proc. 2, Amer. Math. Soc. (1982) 141
,[48] Algebraic $K$–theory of spaces, from: "Algebraic and geometric topology (New Brunswick, N.J., 1983)", Lecture Notes in Math. 1126, Springer (1985) 318
,[49] Algebraic $K$–theory of spaces, concordance, and stable homotopy theory, from: "Algebraic topology and algebraic $K$–theory (Princeton, N.J., 1983)", Ann. of Math. Stud. 113, Princeton Univ. Press (1987) 392
,[50] The stable parametrized $h$–cobordism theorem, in preparation
,Cité par Sources :