Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that an infinite family of virtually overtwisted tight contact structures discovered by Honda on certain circle bundles over surfaces admit no symplectic semi–fillings. The argument uses results of Mrowka, Ozsváth and Yu on the translation–invariant solutions to the Seiberg–Witten equations on cylinders and the non–triviality of the Kronheimer–Mrowka monopole invariants of symplectic fillings.
Lisca, Paolo 1 ; Stipsicz, András I 2
@article{GT_2003_7_2_a13, author = {Lisca, Paolo and Stipsicz, Andr\'as I}, title = {An infinite family of tight, not semi-fillable contact three-manifolds}, journal = {Geometry & topology}, pages = {1055--1073}, publisher = {mathdoc}, volume = {7}, number = {2}, year = {2003}, doi = {10.2140/gt.2003.7.1055}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.1055/} }
TY - JOUR AU - Lisca, Paolo AU - Stipsicz, András I TI - An infinite family of tight, not semi-fillable contact three-manifolds JO - Geometry & topology PY - 2003 SP - 1055 EP - 1073 VL - 7 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.1055/ DO - 10.2140/gt.2003.7.1055 ID - GT_2003_7_2_a13 ER -
%0 Journal Article %A Lisca, Paolo %A Stipsicz, András I %T An infinite family of tight, not semi-fillable contact three-manifolds %J Geometry & topology %D 2003 %P 1055-1073 %V 7 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.1055/ %R 10.2140/gt.2003.7.1055 %F GT_2003_7_2_a13
Lisca, Paolo; Stipsicz, András I. An infinite family of tight, not semi-fillable contact three-manifolds. Geometry & topology, Tome 7 (2003) no. 2, pp. 1055-1073. doi : 10.2140/gt.2003.7.1055. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.1055/
[1] Symplectic geometry, Progress in Mathematics 124, Birkhäuser Verlag (1994)
, , , , ,[2] An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279
,[3] The Seiberg–Witten equations and 4–manifold topology, Bull. Amer. Math. Soc. $($N.S.$)$ 33 (1996) 45
,[4] The geometry of four-manifolds, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1990)
, ,[5] Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623
,[6] Filling by holomorphic discs and its applications, from: "Geometry of low-dimensional manifolds, 2 (Durham, 1989)", London Math. Soc. Lecture Note Ser. 151, Cambridge Univ. Press (1990) 45
,[7] Convex symplectic manifolds, from: "Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989)", Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 135
, ,[8] Introductory lectures on contact geometry, from: "Topology and geometry of manifolds (Athens, GA, 2001)", Proc. Sympos. Pure Math. 71, Amer. Math. Soc. (2003) 81
,[9] Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609
, ,[10] Convexité en topologie de contact, Comment. Math. Helv. 66 (1991) 637
,[11] Structures de contact sur les variétés fibrées en cercles audessus d'une surface, Comment. Math. Helv. 76 (2001) 218
,[12] Contact structures, linkings and fibrations, talk at the meeting “4–dimensional Manifolds”, Oberwolfach (2001)
,[13] Handlebody construction of Stein surfaces, Ann. of Math. $(2)$ 148 (1998) 619
,[14] On the classification of tight contact structures I, Geom. Topol. 4 (2000) 309
,[15] On the classification of tight contact structures II, J. Differential Geom. 55 (2000) 83
,[16] Monopoles and contact structures, Invent. Math. 130 (1997) 209
, ,[17] Symplectic fillings and positive scalar curvature, Geom. Topol. 2 (1998) 103
,[18] On symplectic fillings of 3–manifolds, from: "Proceedings of 6th Gökova Geometry–Topology Conference" (1999) 151
,[19] Tight, not semi-fillable contact circle bundles, Math. Ann. 328 (2004) 285
, ,[20] Seiberg–Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997) 685
, , ,[21] On embedding circle-bundles in four-manifolds, Math. Res. Lett. 7 (2000) 657
, ,Cité par Sources :