Cosimplicial resolutions and homotopy spectral sequences in model categories
Geometry & topology, Tome 7 (2003) no. 2, pp. 1001-1053.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop a general theory of cosimplicial resolutions, homotopy spectral sequences, and completions for objects in model categories, extending work of Bousfield–Kan and Bendersky–Thompson for ordinary spaces. This is based on a generalized cosimplicial version of the Dwyer–Kan–Stover theory of resolution model categories, and we are able to construct our homotopy spectral sequences and completions using very flexible weak resolutions in the spirit of relative homological algebra. We deduce that our completion functors have triple structures and preserve certain fiber squares up to homotopy. We also deduce that the Bendersky–Thompson completions over connective ring spectra are equivalent to Bousfield–Kan completions over solid rings. The present work allows us to show, in a subsequent paper, that the homotopy spectral sequences over arbitrary ring spectra have well-behaved composition pairings.

DOI : 10.2140/gt.2003.7.1001
Keywords: cosimplicial resolutions, homotopy spectral sequences, modelcategories, Bendersky–Thompson completion, Bousfield–Kan completion

Bousfield, A K 1

1 Department of Mathematics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
@article{GT_2003_7_2_a12,
     author = {Bousfield, A K},
     title = {Cosimplicial resolutions and homotopy spectral sequences in model categories},
     journal = {Geometry & topology},
     pages = {1001--1053},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {2003},
     doi = {10.2140/gt.2003.7.1001},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.1001/}
}
TY  - JOUR
AU  - Bousfield, A K
TI  - Cosimplicial resolutions and homotopy spectral sequences in model categories
JO  - Geometry & topology
PY  - 2003
SP  - 1001
EP  - 1053
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.1001/
DO  - 10.2140/gt.2003.7.1001
ID  - GT_2003_7_2_a12
ER  - 
%0 Journal Article
%A Bousfield, A K
%T Cosimplicial resolutions and homotopy spectral sequences in model categories
%J Geometry & topology
%D 2003
%P 1001-1053
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.1001/
%R 10.2140/gt.2003.7.1001
%F GT_2003_7_2_a12
Bousfield, A K. Cosimplicial resolutions and homotopy spectral sequences in model categories. Geometry & topology, Tome 7 (2003) no. 2, pp. 1001-1053. doi : 10.2140/gt.2003.7.1001. http://geodesic.mathdoc.fr/articles/10.2140/gt.2003.7.1001/

[1] J F Adams, Stable homotopy and generalised homology, University of Chicago Press (1974)

[2] M Barr, J Beck, Homology and standard constructions, from: "Sem. on Triples and Categorical Homology Theory (ETH, Zürich, 1966/67)", Springer (1969) 245

[3] M Bendersky, E B Curtis, H R Miller, The unstable Adams spectral sequence for generalized homology, Topology 17 (1978) 229

[4] M Bendersky, D M Davis, Compositions in the $v_1$–periodic homotopy groups of spheres, Forum Math. 15 (2003) 229

[5] M Bendersky, D M Davis, A stable approach to an unstable homotopy spectral sequence, Topology 42 (2003) 1261

[6] M Bendersky, J R Hunton, On the coalgebraic ring and Bousfield–Kan spectral sequence for a Landweber exact spectrum, Proc. Edinb. Math. Soc. $(2)$ 47 (2004) 513

[7] M Bendersky, R D Thompson, The Bousfield–Kan spectral sequence for periodic homology theories, Amer. J. Math. 122 (2000) 599

[8] A K Bousfield, D M Kan, The core of a ring, J. Pure Appl. Algebra 2 (1972) 73

[9] A K Bousfield, The localization of spaces with respect to homology, Topology 14 (1975) 133

[10] A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257

[11] A K Bousfield, Homotopy spectral sequences and obstructions, Israel J. Math. 66 (1989) 54

[12] A K Bousfield, On $\lambda$–rings and the $K$–theory of infinite loop spaces, $K$–Theory 10 (1996) 1

[13] A K Bousfield, On $p$–adic $\lambda$–rings and the $K$–theory of $H$–spaces, Math. Z. 223 (1996) 483

[14] A K Bousfield, The $K$–theory localizations and $v_1$–periodic homotopy groups of $H$–spaces, Topology 38 (1999) 1239

[15] A K Bousfield, On the telescopic homotopy theory of spaces, Trans. Amer. Math. Soc. 353 (2001) 2391

[16] A K Bousfield, Pairings of homotopy spectral sequences in model categories, in preparation,

[17] A K Bousfield, E M Friedlander, Homotopy theory of $\Gamma$–spaces, spectra, and bisimplicial sets, from: "Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II", Lecture Notes in Math. 658, Springer (1978) 80

[18] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer (1972)

[19] A K Bousfield, D M Kan, The homotopy spectral sequence of a space with coefficients in a ring, Topology 11 (1972) 79

[20] A K Bousfield, D M Kan, Pairings and products in the homotopy spectral sequence, Trans. Amer. Math. Soc. 177 (1973) 319

[21] A Dold, D Puppe, Homologie nicht-additiver Funktoren. Anwendungen, Ann. Inst. Fourier Grenoble 11 (1961) 201

[22] E D Farjoun, Two completion towers for generalized homology, from: "Une dégustation topologique: homotopy theory in the Swiss Alps (Arolla, 1999)", Contemp. Math. 265, Amer. Math. Soc. (2000) 27

[23] E Dror, W G Dwyer, D M Kan, An arithmetic square for virtually nilpotent spaces, Illinois J. Math. 21 (1977) 242

[24] W G Dwyer, D M Kan, C R Stover, An $E^2$ model category structure for pointed simplicial spaces, J. Pure Appl. Algebra 90 (1993) 137

[25] W G Dwyer, J Spaliński, Homotopy theories and model categories, from: "Handbook of algebraic topology", North-Holland (1995) 73

[26] S Eilenberg, J C Moore, Foundations of relative homological algebra, Mem. Amer. Math. Soc. No. 55 (1965) 39

[27] A D Elmendorf, I Kriz, M A Mandell, J P May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, American Mathematical Society (1997)

[28] P G Goerss, M J Hopkins, Resolutions in model categories, preprint,

[29] P G Goerss, J F Jardine, Simplicial homotopy theory, Progress in Mathematics 174, Birkhäuser Verlag (1999)

[30] P S Hirschhorn, Model categories and their localizations, Mathematical Surveys and Monographs 99, American Mathematical Society (2003)

[31] M Hovey, Model categories, Mathematical Surveys and Monographs 63, American Mathematical Society (1999)

[32] M Hovey, B Shipley, J Smith, Symmetric spectra, J. Amer. Math. Soc. 13 (2000) 149

[33] J F Jardine, $E_2$ model structures for presheaf categories, preprint,

[34] A Libman, Universal spaces for homotopy limits of modules over coaugmented functors I, II, Topology 42 (2003) 555, 569

[35] A Libman, Homotopy limits of triples, Topology Appl. 130 (2003) 133

[36] S Maclane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1971)

[37] J P Meyer, Cosimplicial homotopies, Proc. Amer. Math. Soc. 108 (1990) 9

[38] G Mislin, Localization with respect to $K$–theory, J. Pure Appl. Algebra 10 (1977/78) 201

[39] D G Quillen, Homotopical algebra, Lecture Notes in Mathematics 43, Springer (1967)

[40] D L Rector, Steenrod operations in the Eilenberg–Moore spectral sequence, Comment. Math. Helv. 45 (1970) 540

[41] C L Reedy, Homotopy theory of model categories, preprint, (1973)

Cité par Sources :