Convex cocompact subgroups of mapping class groups
Geometry & topology, Tome 6 (2002) no. 1, pp. 91-152.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We develop a theory of convex cocompact subgroups of the mapping class group MCG of a closed, oriented surface S of genus at least 2, in terms of the action on Teichmüller space. Given a subgroup G of MCG defining an extension 1 π1(S) ΓG G 1, we prove that if ΓG is a word hyperbolic group then G is a convex cocompact subgroup of MCG. When G is free and convex cocompact, it is called a Schottky subgroup.

DOI : 10.2140/gt.2002.6.91
Keywords: mapping class group, Schottky subgroup, cocompact subgroup, convexity, pseudo-Anosov

Farb, Benson 1 ; Mosher, Lee 2

1 Department of Mathematics, University of Chicago, 5734 University Ave, Chicago, Illinois 60637, USA
2 Department of Mathematics and Computer Science, Rutgers University, Newark, New Jersey 07102, USA
@article{GT_2002_6_1_a4,
     author = {Farb, Benson and Mosher, Lee},
     title = {Convex cocompact subgroups of mapping class groups},
     journal = {Geometry & topology},
     pages = {91--152},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.91},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.91/}
}
TY  - JOUR
AU  - Farb, Benson
AU  - Mosher, Lee
TI  - Convex cocompact subgroups of mapping class groups
JO  - Geometry & topology
PY  - 2002
SP  - 91
EP  - 152
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.91/
DO  - 10.2140/gt.2002.6.91
ID  - GT_2002_6_1_a4
ER  - 
%0 Journal Article
%A Farb, Benson
%A Mosher, Lee
%T Convex cocompact subgroups of mapping class groups
%J Geometry & topology
%D 2002
%P 91-152
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.91/
%R 10.2140/gt.2002.6.91
%F GT_2002_6_1_a4
Farb, Benson; Mosher, Lee. Convex cocompact subgroups of mapping class groups. Geometry & topology, Tome 6 (2002) no. 1, pp. 91-152. doi : 10.2140/gt.2002.6.91. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.91/

[1] W Abikoff, The real analytic theory of Teichmüller space, Lecture Notes in Mathematics 820, Springer (1980)

[2] G N Arzhantseva, On quasiconvex subgroups of word hyperbolic groups, Geom. Dedicata 87 (2001) 191

[3] R Baer, Isotopien von Kurven auf orientierbaren, geschlossenen Flächen und ihr Zusammenhang mit der topologischen Deformation der Flächen, J. Reine Angew. Math. 159 (1928) 101

[4] L Bers, Fiber spaces over Teichmüller spaces, Acta. Math. 130 (1973) 89

[5] L Bers, An extremal problem for quasiconformal mappings and a theorem by Thurston, Acta Math. 141 (1978) 73

[6] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85

[7] J S Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies 82, Princeton University Press (1974)

[8] J S Birman, A Lubotzky, J Mccarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107

[9] N Brady, Branched coverings of cubical complexes and subgroups of hyperbolic groups, J. London Math. Soc. $(2)$ 60 (1999) 461

[10] J Brock, B Farb, Curvature and rank of Teichmüller space, Amer. J. Math. 128 (2006) 1

[11] R D Canary, Covering theorems for hyperbolic 3–manifolds, from: "Low-dimensional topology (Knoxville, TN, 1992)", Conf. Proc. Lecture Notes Geom. Topology, III, Int. Press, Cambridge, MA (1994) 21

[12] J W Cannon, The theory of negatively curved spaces and groups, from: "Ergodic theory, symbolic dynamics, and hyperbolic spaces (Trieste, 1989)", Oxford Sci. Publ., Oxford Univ. Press (1991) 315

[13] D B A Epstein, Curves on 2–manifolds and isotopies, Acta Math. 115 (1966) 83

[14] B Farb, A Lubotzky, Y Minsky, Rank-1 phenomena for mapping class groups, Duke Math. J. 106 (2001) 581

[15] B Farb, L Mosher, The geometry of surface-by-free groups, Geom. Funct. Anal. 12 (2002) 915

[16] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284

[17] F P Gardiner, H Masur, Extremal length geometry of Teichmüller space, Complex Variables Theory Appl. 16 (1991) 209

[18] S M Gersten, Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998) 1031

[19] G González-Díez, W J Harvey, Surface groups inside mapping class groups, Topology 38 (1999) 57

[20] A Haefliger, Complexes of groups and orbihedra, from: "Group theory from a geometrical viewpoint (Trieste, 1990)", World Sci. Publ., River Edge, NJ (1991) 504

[21] J Hubbard, H Masur, Quadratic differentials and foliations, Acta Math. 142 (1979) 221

[22] Y Imayoshi, M Taniguchi, An introduction to Teichmüller spaces, Springer (1992)

[23] N V Ivanov, Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs 115, American Mathematical Society (1992)

[24] N V Ivanov, Automorphisms of complexes of curves and of Teichmüller spaces, from: "Progress in knot theory and related topics", Travaux en Cours 56, Hermann (1997) 113

[25] M Kapovich, On normal subgroups in the fundamental groups of complex surfaces,

[26] S P Kerckhoff, The asymptotic geometry of Teichmüller space, Topology 19 (1980) 23

[27] B Maskit, Comparison of hyperbolic and extremal lengths, Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985) 381

[28] H Masur, Uniquely ergodic quadratic differentials, Comment. Math. Helv. 55 (1980) 255

[29] H Masur, Interval exchange transformations and measured foliations, Ann. of Math. $(2)$ 115 (1982) 169

[30] H Masur, Two boundaries of Teichmüller space, Duke Math. J. 49 (1982) 183

[31] H Masur, Hausdorff dimension of the set of nonergodic foliations of a quadratic differential, Duke Math. J. 66 (1992) 387

[32] H A Masur, Y N Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999) 103

[33] H A Masur, Y N Minsky, Unstable quasi-geodesics in Teichmüller space, from: "In the tradition of Ahlfors and Bers (Stony Brook, NY, 1998)", Contemp. Math. 256, Amer. Math. Soc. (2000) 239

[34] H A Masur, M Wolf, Teichmüller space is not Gromov hyperbolic, Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995) 259

[35] J Mccarthy, A “Tits-alternative” for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985) 583

[36] J Mccarthy, A Papadopoulos, Dynamics on Thurston's sphere of projective measured foliations, Comment. Math. Helv. 64 (1989) 133

[37] Y N Minsky, On rigidity, limit sets, and end invariants of hyperbolic 3–manifolds, J. Amer. Math. Soc. 7 (1994) 539

[38] Y N Minsky, Quasi-projections in Teichmüller space, J. Reine Angew. Math. 473 (1996) 121

[39] L Mosher, Hyperbolic extensions of groups, J. Pure Appl. Algebra 110 (1996) 305

[40] L Mosher, A hyperbolic-by-hyperbolic hyperbolic group, Proc. Amer. Math. Soc. 125 (1997) 3447

[41] L Mosher, Stable Teichmüller quasigeodesics and ending laminations, Geom. Topol. 7 (2003) 33

[42] D Mumford, A remark on Mahler's compactness theorem, Proc. Amer. Math. Soc. 28 (1971) 289

[43] J Nielsen, Untersuchungen zur Topologie der geschlossenen zweiseitigen Flächen, Acta Math. 50 (1927) 189

[44] J P Otal, Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque (1996)

[45] H L Royden, Report on the Teichmüller metric, Proc. Nat. Acad. Sci. U.S.A. 65 (1970) 497

[46] J R Stallings, Non-positively curved triangles of groups, from: "Group theory from a geometrical viewpoint (Trieste, 1990)", World Sci. Publ., River Edge, NJ (1991) 491

[47] K Whittlesey, Normal all pseudo–Anosov subgroups of mapping class groups, Geom. Topol. 4 (2000) 293

Cité par Sources :