Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a hyperbolic 3–manifold containing an embedded closed geodesic, we estimate the volume of a complete hyperbolic metric on the complement of the geodesic in terms of the geometry of . As a corollary, we show that the smallest volume orientable hyperbolic 3–manifold has volume .
Agol, Ian 1
@article{GT_2002_6_2_a10, author = {Agol, Ian}, title = {Volume change under drilling}, journal = {Geometry & topology}, pages = {905--916}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2002}, doi = {10.2140/gt.2002.6.905}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.905/} }
Agol, Ian. Volume change under drilling. Geometry & topology, Tome 6 (2002) no. 2, pp. 905-916. doi : 10.2140/gt.2002.6.905. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.905/
[1] Lemme de Schwarz réel et applications géométriques, Acta Math. 183 (1999) 145
, , ,[2] Spherical space forms and Dehn filling, Topology 35 (1996) 809
, ,[3] Volume rigidity for finite volume manifolds, Amer. J. Math. 127 (2005) 535
, , ,[4] Bounds on volume increase under Dehn drilling operations, Proc. London Math. Soc. $(3)$ 77 (1998) 415
,[5] The orientable cusped hyperbolic 3–manifolds of minimum volume, Invent. Math. 146 (2001) 451
, ,[6] The arithmetic hyperbolic 3–manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 30 (2001) 1
, , , ,[7] Volumes of tubes in hyperbolic 3–manifolds, J. Differential Geom. 57 (2001) 23
, , ,[8] Homotopy hyperbolic 3–manifolds are hyperbolic, Ann. of Math. $(2)$ 157 (2003) 335
, , ,[9] Riemannian geometry, Universitext, Springer (1990)
, , ,[10] tube
,[11] Deformations of hyperbolic 3–cone-manifolds, J. Differential Geom. 49 (1998) 469
,[12] Volumes of hyperbolic 3–manifolds, Conform. Geom. Dyn. 7 (2003) 34
, ,[13] On Thurston's uniformization theorem for three-dimensional manifolds, from: "The Smith conjecture (New York, 1979)", Pure Appl. Math. 112, Academic Press (1984) 37
,[14] Cones embedded in hyperbolic manifolds, J. Differential Geom. 58 (2001) 219
,[15] Density of tube packings in hyperbolic space, Pacific J. Math. 214 (2004) 127
,[16] Density of tube packings in hyperbolic space, Pacific J. Math. 214 (2004) 127
,[17] SnapPea: A computer program for creating and studying hyperbolic 3–manifolds
,Cité par Sources :