Volume change under drilling
Geometry & topology, Tome 6 (2002) no. 2, pp. 905-916.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a hyperbolic 3–manifold M containing an embedded closed geodesic, we estimate the volume of a complete hyperbolic metric on the complement of the geodesic in terms of the geometry of M. As a corollary, we show that the smallest volume orientable hyperbolic 3–manifold has volume > .32.

DOI : 10.2140/gt.2002.6.905
Keywords: hyperbolic structure, 3–manifold, volume, geodesic

Agol, Ian 1

1 MSCS, SEO 322, m/c 249, University of Illinois at Chicago, 851 S Morgan St, Chicago, Illinois 60607-7045, USA
@article{GT_2002_6_2_a10,
     author = {Agol, Ian},
     title = {Volume change under drilling},
     journal = {Geometry & topology},
     pages = {905--916},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2002},
     doi = {10.2140/gt.2002.6.905},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.905/}
}
TY  - JOUR
AU  - Agol, Ian
TI  - Volume change under drilling
JO  - Geometry & topology
PY  - 2002
SP  - 905
EP  - 916
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.905/
DO  - 10.2140/gt.2002.6.905
ID  - GT_2002_6_2_a10
ER  - 
%0 Journal Article
%A Agol, Ian
%T Volume change under drilling
%J Geometry & topology
%D 2002
%P 905-916
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.905/
%R 10.2140/gt.2002.6.905
%F GT_2002_6_2_a10
Agol, Ian. Volume change under drilling. Geometry & topology, Tome 6 (2002) no. 2, pp. 905-916. doi : 10.2140/gt.2002.6.905. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.905/

[1] G Besson, G Courtois, S Gallot, Lemme de Schwarz réel et applications géométriques, Acta Math. 183 (1999) 145

[2] S A Bleiler, C D Hodgson, Spherical space forms and Dehn filling, Topology 35 (1996) 809

[3] J Boland, C Connell, J Souto, Volume rigidity for finite volume manifolds, Amer. J. Math. 127 (2005) 535

[4] M Bridgeman, Bounds on volume increase under Dehn drilling operations, Proc. London Math. Soc. $(3)$ 77 (1998) 415

[5] C Cao, G R Meyerhoff, The orientable cusped hyperbolic 3–manifolds of minimum volume, Invent. Math. 146 (2001) 451

[6] T Chinburg, E Friedman, K N Jones, A W Reid, The arithmetic hyperbolic 3–manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 30 (2001) 1

[7] D Gabai, G R Meyerhoff, P Milley, Volumes of tubes in hyperbolic 3–manifolds, J. Differential Geom. 57 (2001) 23

[8] D Gabai, G R Meyerhoff, N Thurston, Homotopy hyperbolic 3–manifolds are hyperbolic, Ann. of Math. $(2)$ 157 (2003) 335

[9] S Gallot, D Hulin, J Lafontaine, Riemannian geometry, Universitext, Springer (1990)

[10] O Goodman, tube

[11] S Kojima, Deformations of hyperbolic 3–cone-manifolds, J. Differential Geom. 49 (1998) 469

[12] T H Marshall, G J Martin, Volumes of hyperbolic 3–manifolds, Conform. Geom. Dyn. 7 (2003) 34

[13] J W Morgan, On Thurston's uniformization theorem for three-dimensional manifolds, from: "The Smith conjecture (New York, 1979)", Pure Appl. Math. 112, Academic Press (1984) 37

[14] A Przeworski, Cones embedded in hyperbolic manifolds, J. Differential Geom. 58 (2001) 219

[15] A Przeworski, Density of tube packings in hyperbolic space, Pacific J. Math. 214 (2004) 127

[16] A Przeworski, Density of tube packings in hyperbolic space, Pacific J. Math. 214 (2004) 127

[17] J Weeks, SnapPea: A computer program for creating and studying hyperbolic 3–manifolds

Cité par Sources :