A chain rule in the calculus of homotopy functors
Geometry & topology, Tome 6 (2002) no. 2, pp. 853-887.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We formulate and prove a chain rule for the derivative, in the sense of Goodwillie, of compositions of weak homotopy functors from simplicial sets to simplicial sets. The derivative spectrum F(X) of such a functor F at a simplicial set X can be equipped with a right action by the loop group of its domain X, and a free left action by the loop group of its codomain Y = F(X). The derivative spectrum (EF)(X) of a composite of such functors is then stably equivalent to the balanced smash product of the derivatives E(Y ) and F(X), with respect to the two actions of the loop group of Y . As an application we provide a non-manifold computation of the derivative of the functor F(X) = Q(Map(K,X)+).

DOI : 10.2140/gt.2002.6.853
Keywords: homotopy functor, chain rule, Brown representability

Klein, John R 1 ; Rognes, John 2

1 Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA
2 Department of Mathematics, University of Oslo, N–0316 Oslo, Norway
@article{GT_2002_6_2_a8,
     author = {Klein, John R and Rognes, John},
     title = {A chain rule in the calculus of homotopy functors},
     journal = {Geometry & topology},
     pages = {853--887},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2002},
     doi = {10.2140/gt.2002.6.853},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.853/}
}
TY  - JOUR
AU  - Klein, John R
AU  - Rognes, John
TI  - A chain rule in the calculus of homotopy functors
JO  - Geometry & topology
PY  - 2002
SP  - 853
EP  - 887
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.853/
DO  - 10.2140/gt.2002.6.853
ID  - GT_2002_6_2_a8
ER  - 
%0 Journal Article
%A Klein, John R
%A Rognes, John
%T A chain rule in the calculus of homotopy functors
%J Geometry & topology
%D 2002
%P 853-887
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.853/
%R 10.2140/gt.2002.6.853
%F GT_2002_6_2_a8
Klein, John R; Rognes, John. A chain rule in the calculus of homotopy functors. Geometry & topology, Tome 6 (2002) no. 2, pp. 853-887. doi : 10.2140/gt.2002.6.853. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.853/

[1] G Arone, A generalization of Snaith-type filtration, Trans. Amer. Math. Soc. 351 (1999) 1123

[2] M Bökstedt, W C Hsiang, I Madsen, The cyclotomic trace and algebraic $K$–theory of spaces, Invent. Math. 111 (1993) 465

[3] A K Bousfield, E M Friedlander, Homotopy theory of $\Gamma$–spaces, spectra, and bisimplicial sets, from: "Geometric applications of homotopy theory (Proc. Conf., Evanston, Ill., 1977), II", Lecture Notes in Math. 658, Springer (1978) 80

[4] A K Bousfield, D M Kan, Homotopy limits, completions and localizations, Lecture Notes in Mathematics 304, Springer (1972)

[5] H Fausk, Chain rule in functor calculus, Cand. Scient. thesis, University of Oslo (1995)

[6] T G Goodwillie, Calculus I: The first derivative of pseudoisotopy theory, $K$–Theory 4 (1990) 1

[7] T G Goodwillie, Calculus II: Analytic functors, $K$–Theory 5 (1991/92) 295

[8] A Hatcher, Algebraic topology, Cambridge University Press (2002)

[9] L Hesselholt, A homotopy theoretical derivation of $Q\mathrm{Map}(K,-)_+$, Math. Scand. 70 (1992) 193

[10] J R Klein, On the derivative of the stable homotopy of mapping spaces, Homology Homotopy Appl. 5 (2003) 601

[11] M Lydakis, Simplicial functors and stable homotopy theory, Bielefeld preprint 98–049 (1998)

[12] S Maclane, Categories for the working mathematician, Graduate Texts in Mathematics 5, Springer (1971)

[13] S Schwede, Stable homotopy of algebraic theories, Topology 40 (2001) 1

[14] F Waldhausen, Algebraic $K$–theory of spaces, from: "Algebraic and geometric topology (New Brunswick, N.J., 1983)", Lecture Notes in Math. 1126, Springer (1985) 318

[15] F Waldhausen, On the construction of the Kan loop group, Doc. Math. 1 (1996) 121

Cité par Sources :