Regenerating hyperbolic cone structures from Nil
Geometry & topology, Tome 6 (2002) no. 2, pp. 815-852.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let O be a three-dimensional Nil–orbifold, with branching locus a knot Σ transverse to the Seifert fibration. We prove that O is the limit of hyperbolic cone manifolds with cone angle in (π ε,π). We also study the space of Dehn filling parameters of O Σ. Surprisingly it is not diffeomorphic to the deformation space constructed from the variety of representations of O Σ. As a corollary of this, we find examples of spherical cone manifolds with singular set a knot that are not locally rigid. Those examples have large cone angles.

DOI : 10.2140/gt.2002.6.815
Keywords: Hyperbolic structure, cone 3–manifolds, local rigidity

Porti, Joan 1

1 Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
@article{GT_2002_6_2_a7,
     author = {Porti, Joan},
     title = {Regenerating hyperbolic cone structures from {Nil}},
     journal = {Geometry & topology},
     pages = {815--852},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2002},
     doi = {10.2140/gt.2002.6.815},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.815/}
}
TY  - JOUR
AU  - Porti, Joan
TI  - Regenerating hyperbolic cone structures from Nil
JO  - Geometry & topology
PY  - 2002
SP  - 815
EP  - 852
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.815/
DO  - 10.2140/gt.2002.6.815
ID  - GT_2002_6_2_a7
ER  - 
%0 Journal Article
%A Porti, Joan
%T Regenerating hyperbolic cone structures from Nil
%J Geometry & topology
%D 2002
%P 815-852
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.815/
%R 10.2140/gt.2002.6.815
%F GT_2002_6_2_a7
Porti, Joan. Regenerating hyperbolic cone structures from Nil. Geometry & topology, Tome 6 (2002) no. 2, pp. 815-852. doi : 10.2140/gt.2002.6.815. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.815/

[1] L Ben Abdelghani, Éspaces des représentations du groupe d'un noeud dans un groupe de Lie, thesis, Université de Bourgogne (1998)

[2] G E Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics 46, Academic Press (1972)

[3] M Boileau, J Porti, Geometrization of 3–orbifolds of cyclic type, Astérisque (2001) 208

[4] M Boileau, B Leeb, J Porti, Uniformization of small 3–orbifolds, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 57

[5] M Boileau, B Leeb, J Porti, Geometrization of 3–dimensional orbifolds, Ann. of Math. $(2)$ 162 (2005) 195

[6] M Boileau, B Leeb, J Porti, Geometrization of 3–dimensional orbifolds, Ann. of Math. $(2)$ 162 (2005) 195

[7] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3

[8] D Cooper, C D Hodgson, S P Kerckhoff, Three-dimensional orbifolds and cone-manifolds, MSJ Memoirs 5, Mathematical Society of Japan (2000)

[9] M Culler, Lifting representations to covering groups, Adv. in Math. 59 (1986) 64

[10] M Culler, P B Shalen, Varieties of group representations and splittings of 3–manifolds, Ann. of Math. $(2)$ 117 (1983) 109

[11] M Heusener, J Porti, E Suárez, Regenerating singular hyperbolic structures from Sol, J. Differential Geom. 59 (2001) 439

[12] C Hodgson, Degeneration and Regeneration of Hyperbolic Structures on Three-Manifolds, PhD thesis, Princeton University (1986)

[13] C D Hodgson, S P Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom. 48 (1998) 1

[14] S Kojima, Deformations of hyperbolic 3–cone-manifolds, J. Differential Geom. 49 (1998) 469

[15] A Lubotzky, A R Magid, Varieties of representations of finitely generated groups, Mem. Amer. Math. Soc. 58 (1985)

[16] J Porti, Torsion de Reidemeister pour les variétés hyperboliques, Mem. Amer. Math. Soc. 128 (1997)

[17] J Porti, Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology 37 (1998) 365

[18] E Suárez, Poliedros de Dirichlet de 3–variedades cónicas y sus deformaciones, thesis, Universidad Complutense de Madrid (1998)

[19] P Scott, The geometries of 3–manifolds, Bull. London Math. Soc. 15 (1983) 401

[20] W P Thurston, The Geometry and Topology of 3–manifolds, Princeton University (1979)

[21] W P Thurston, Three-dimensional geometry and topology Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)

[22] H Whitney, On singularities of mappings of euclidean spaces I: Mappings of the plane into the plane, Ann. of Math. $(2)$ 62 (1955) 374

Cité par Sources :