Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that every subgroup of the mapping class group of a compact surface is either virtually abelian or it has infinite dimensional second bounded cohomology. As an application, we give another proof of the Farb–Kaimanovich–Masur rigidity theorem that states that does not contain a higher rank lattice as a subgroup.
Bestvina, Mladen 1 ; Fujiwara, Koji 2
@article{GT_2002_6_1_a3, author = {Bestvina, Mladen and Fujiwara, Koji}, title = {Bounded cohomology of subgroups of mapping class groups}, journal = {Geometry & topology}, pages = {69--89}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2002}, doi = {10.2140/gt.2002.6.69}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.69/} }
TY - JOUR AU - Bestvina, Mladen AU - Fujiwara, Koji TI - Bounded cohomology of subgroups of mapping class groups JO - Geometry & topology PY - 2002 SP - 69 EP - 89 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.69/ DO - 10.2140/gt.2002.6.69 ID - GT_2002_6_1_a3 ER -
Bestvina, Mladen; Fujiwara, Koji. Bounded cohomology of subgroups of mapping class groups. Geometry & topology, Tome 6 (2002) no. 1, pp. 69-89. doi : 10.2140/gt.2002.6.69. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.69/
[1] Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107
, , ,[2] Some remarks on bounded cohomology, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)", Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 53
,[3] Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002) 219
, ,[4] Mauntner property, Hochschild–Serre sequence in bounded cohomology, and applications, preprint (2000)
, ,[5] Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. $($JEMS$)$ 1 (1999) 199
, ,[6] Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts 9, Cambridge University Press (1988)
, ,[7] Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math. 144 (2001) 169
, ,[8] The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997) 1275
, ,[9] Superrigidity and mapping class groups, Topology 37 (1998) 1169
, ,[10] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284
[11] The second bounded cohomology of a group acting on a Gromov-hyperbolic space, Proc. London Math. Soc. $(3)$ 76 (1998) 70
,[12] The second bounded cohomology of an amalgamated free product of groups, Trans. Amer. Math. Soc. 352 (2000) 1113
,[13] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[14] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982)
,[15] Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. $(2)$ 121 (1985) 215
,[16] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157
,[17] Boundary structure of the modular group, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)", Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245
,[18] Complexes of curves and Teichmüller spaces, Mat. Zametki 49 (1991) 54, 158
,[19] Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices (1997) 651
,[20] The Poisson boundary of the mapping class group, Invent. Math. 125 (1996) 221
, ,[21] Commutators in mapping class groups and bounded cohomology,
,[22] Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999) 103
, ,[23] Dynamics on Thurston's sphere of projective measured foliations, Comment. Math. Helv. 64 (1989) 133
, ,[24] Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics 1758, Springer (2001)
,[25] Structure of the mapping class groups of surfaces: a survey and a prospect, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 349
,[26] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417
,[27] Ergodic theory and semisimple groups, Monographs in Mathematics 81, Birkhäuser Verlag (1984)
,Cité par Sources :