Bounded cohomology of subgroups of mapping class groups
Geometry & topology, Tome 6 (2002) no. 1, pp. 69-89.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that every subgroup of the mapping class group MCG(S) of a compact surface S is either virtually abelian or it has infinite dimensional second bounded cohomology. As an application, we give another proof of the Farb–Kaimanovich–Masur rigidity theorem that states that MCG(S) does not contain a higher rank lattice as a subgroup.

DOI : 10.2140/gt.2002.6.69
Keywords: Bounded cohomology, mapping class groups, hyperbolic groups

Bestvina, Mladen 1 ; Fujiwara, Koji 2

1 Mathematics Department, University of Utah, 155 South 1400 East, JWB 233, Salt Lake City, Utah 84112, USA
2 Mathematics Institute, Tohoku University, Sendai, 980-8578, Japan
@article{GT_2002_6_1_a3,
     author = {Bestvina, Mladen and Fujiwara, Koji},
     title = {Bounded cohomology of subgroups of mapping class groups},
     journal = {Geometry & topology},
     pages = {69--89},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.69},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.69/}
}
TY  - JOUR
AU  - Bestvina, Mladen
AU  - Fujiwara, Koji
TI  - Bounded cohomology of subgroups of mapping class groups
JO  - Geometry & topology
PY  - 2002
SP  - 69
EP  - 89
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.69/
DO  - 10.2140/gt.2002.6.69
ID  - GT_2002_6_1_a3
ER  - 
%0 Journal Article
%A Bestvina, Mladen
%A Fujiwara, Koji
%T Bounded cohomology of subgroups of mapping class groups
%J Geometry & topology
%D 2002
%P 69-89
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.69/
%R 10.2140/gt.2002.6.69
%F GT_2002_6_1_a3
Bestvina, Mladen; Fujiwara, Koji. Bounded cohomology of subgroups of mapping class groups. Geometry & topology, Tome 6 (2002) no. 1, pp. 69-89. doi : 10.2140/gt.2002.6.69. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.69/

[1] J S Birman, A Lubotzky, J Mccarthy, Abelian and solvable subgroups of the mapping class groups, Duke Math. J. 50 (1983) 1107

[2] R Brooks, Some remarks on bounded cohomology, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)", Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 53

[3] M Burger, N Monod, Continuous bounded cohomology and applications to rigidity theory, Geom. Funct. Anal. 12 (2002) 219

[4] M Burger, N Monod, Mauntner property, Hochschild–Serre sequence in bounded cohomology, and applications, preprint (2000)

[5] M Burger, N Monod, Bounded cohomology of lattices in higher rank Lie groups, J. Eur. Math. Soc. $($JEMS$)$ 1 (1999) 199

[6] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts 9, Cambridge University Press (1988)

[7] H Endo, D Kotschick, Bounded cohomology and non-uniform perfection of mapping class groups, Invent. Math. 144 (2001) 169

[8] D B A Epstein, K Fujiwara, The second bounded cohomology of word-hyperbolic groups, Topology 36 (1997) 1275

[9] B Farb, H Masur, Superrigidity and mapping class groups, Topology 37 (1998) 1169

[10] , Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1979) 284

[11] K Fujiwara, The second bounded cohomology of a group acting on a Gromov-hyperbolic space, Proc. London Math. Soc. $(3)$ 76 (1998) 70

[12] K Fujiwara, The second bounded cohomology of an amalgamated free product of groups, Trans. Amer. Math. Soc. 352 (2000) 1113

[13] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[14] M Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982)

[15] J L Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. $(2)$ 121 (1985) 215

[16] J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157

[17] W J Harvey, Boundary structure of the modular group, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New York, Stony Brook, N.Y., 1978)", Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245

[18] N V Ivanov, Complexes of curves and Teichmüller spaces, Mat. Zametki 49 (1991) 54, 158

[19] N V Ivanov, Automorphism of complexes of curves and of Teichmüller spaces, Internat. Math. Res. Notices (1997) 651

[20] V A Kaimanovich, H Masur, The Poisson boundary of the mapping class group, Invent. Math. 125 (1996) 221

[21] M Korkmaz, Commutators in mapping class groups and bounded cohomology,

[22] H A Masur, Y N Minsky, Geometry of the complex of curves I: Hyperbolicity, Invent. Math. 138 (1999) 103

[23] J Mccarthy, A Papadopoulos, Dynamics on Thurston's sphere of projective measured foliations, Comment. Math. Helv. 64 (1989) 133

[24] N Monod, Continuous bounded cohomology of locally compact groups, Lecture Notes in Mathematics 1758, Springer (2001)

[25] S Morita, Structure of the mapping class groups of surfaces: a survey and a prospect, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)", Geom. Topol. Monogr. 2, Geom. Topol. Publ., Coventry (1999) 349

[26] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417

[27] R J Zimmer, Ergodic theory and semisimple groups, Monographs in Mathematics 81, Birkhäuser Verlag (1984)

Cité par Sources :