A compendium of pseudoholomorphic beasts in ℝ×(S1×S2)
Geometry & topology, Tome 6 (2002) no. 2, pp. 657-814.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This article describes various moduli spaces of pseudoholomorphic curves on the symplectization of a particular overtwisted contact structure on S1 × S2. This contact structure appears when one considers a closed self dual form on a 4–manifold as a symplectic form on the complement of its zero locus. The article is focussed mainly on disks, cylinders and three-holed spheres, but it also supplies groundwork for a description of moduli spaces of curves with more punctures and non-zero genus.

DOI : 10.2140/gt.2002.6.657
Keywords: pseudoholomorphic curves, moduli spaces, contact structures

Taubes, Clifford Henry 1

1 Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138, USA
@article{GT_2002_6_2_a6,
     author = {Taubes, Clifford Henry},
     title = {A compendium of pseudoholomorphic beasts in {\ensuremath{\mathbb{R}}{\texttimes}(S1{\texttimes}S2)}},
     journal = {Geometry & topology},
     pages = {657--814},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2002},
     doi = {10.2140/gt.2002.6.657},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.657/}
}
TY  - JOUR
AU  - Taubes, Clifford Henry
TI  - A compendium of pseudoholomorphic beasts in ℝ×(S1×S2)
JO  - Geometry & topology
PY  - 2002
SP  - 657
EP  - 814
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.657/
DO  - 10.2140/gt.2002.6.657
ID  - GT_2002_6_2_a6
ER  - 
%0 Journal Article
%A Taubes, Clifford Henry
%T A compendium of pseudoholomorphic beasts in ℝ×(S1×S2)
%J Geometry & topology
%D 2002
%P 657-814
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.657/
%R 10.2140/gt.2002.6.657
%F GT_2002_6_2_a6
Taubes, Clifford Henry. A compendium of pseudoholomorphic beasts in ℝ×(S1×S2). Geometry & topology, Tome 6 (2002) no. 2, pp. 657-814. doi : 10.2140/gt.2002.6.657. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.657/

[1] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[2] Y Eliashberg, Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 327

[3] Y Eliashberg, E Hofer, in preparation,

[4] A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513

[5] P Griffiths, J Harris, Principles of algebraic geometry, Wiley-Interscience [John Wiley Sons] (1978)

[6] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[7] R Gompf, private communication

[8] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515

[9] H H W Hofer, Dynamics, topology, and holomorphic curves, from: "Proceedings of the International Congress of Mathematicians, Vol I (Berlin, 1998)" (1998) 255

[10] H Hofer, Holomorphic curves and dynamics in dimension three, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 35

[11] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337

[12] H Hofer, K Wysocki, E Zehnder, Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995) 270

[13] H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: "Topics in nonlinear analysis", Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381

[14] R B Lockhart, R C Mcowen, Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 12 (1985) 409

[15] C Luttinger, unpublished

[16] D Mcduff, The local behaviour of holomorphic curves in almost complex 4–manifolds, J. Differential Geom. 34 (1991) 143

[17] C B Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966)

[18] D Mcduff, D Salamon, $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)

[19] C H Taubes, Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms, Geom. Topol. 3 (1999) 167

[20] C H Taubes, Seiberg–Witten invariants, self-dual harmonic 2–forms and the Hofer–Wysocki–Zehnder formalism, from: "Surveys in differential geometry", Surv. Differ. Geom., VII, Int. Press, Somerville, MA (2000) 625

[21] C H Taubes, The geometry of the Seiberg–Witten invariants, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 493

[22] C H Taubes, The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on $S^1\times B^3$, Geom. Topol. 2 (1998) 221

[23] C H Taubes, $L^2$ moduli spaces on 4–manifolds with cylindrical ends, Monographs in Geometry and Topology, I, International Press (1993)

[24] C H Taubes, $\mathrm{Gr}\Longrightarrow\mathrm{SW}$: from pseudo-holomorphic curves to Seiberg–Witten solutions, J. Differential Geom. 51 (1999) 203

Cité par Sources :