Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This article describes various moduli spaces of pseudoholomorphic curves on the symplectization of a particular overtwisted contact structure on . This contact structure appears when one considers a closed self dual form on a 4–manifold as a symplectic form on the complement of its zero locus. The article is focussed mainly on disks, cylinders and three-holed spheres, but it also supplies groundwork for a description of moduli spaces of curves with more punctures and non-zero genus.
Taubes, Clifford Henry 1
@article{GT_2002_6_2_a6, author = {Taubes, Clifford Henry}, title = {A compendium of pseudoholomorphic beasts in {\ensuremath{\mathbb{R}}{\texttimes}(S1{\texttimes}S2)}}, journal = {Geometry & topology}, pages = {657--814}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2002}, doi = {10.2140/gt.2002.6.657}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.657/} }
Taubes, Clifford Henry. A compendium of pseudoholomorphic beasts in ℝ×(S1×S2). Geometry & topology, Tome 6 (2002) no. 2, pp. 657-814. doi : 10.2140/gt.2002.6.657. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.657/
[1] Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43
, , ,[2] Invariants in contact topology, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 327
,[3] in preparation,
, ,[4] Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513
,[5] Principles of algebraic geometry, Wiley-Interscience [John Wiley Sons] (1978)
, ,[6] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[7] private communication
,[8] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515
,[9] Dynamics, topology, and holomorphic curves, from: "Proceedings of the International Congress of Mathematicians, Vol I (Berlin, 1998)" (1998) 255
,[10] Holomorphic curves and dynamics in dimension three, from: "Symplectic geometry and topology (Park City, UT, 1997)", IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 35
,[11] Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337
, , ,[12] Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995) 270
, , ,[13] Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: "Topics in nonlinear analysis", Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381
, , ,[14] Elliptic differential operators on noncompact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 12 (1985) 409
, ,[15] unpublished
,[16] The local behaviour of holomorphic curves in almost complex 4–manifolds, J. Differential Geom. 34 (1991) 143
,[17] Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften 130, Springer New York, New York (1966)
,[18] $J$–holomorphic curves and quantum cohomology, University Lecture Series 6, American Mathematical Society (1994)
, ,[19] Seiberg–Witten invariants and pseudo-holomorphic subvarieties for self-dual, harmonic 2–forms, Geom. Topol. 3 (1999) 167
,[20] Seiberg–Witten invariants, self-dual harmonic 2–forms and the Hofer–Wysocki–Zehnder formalism, from: "Surveys in differential geometry", Surv. Differ. Geom., VII, Int. Press, Somerville, MA (2000) 625
,[21] The geometry of the Seiberg–Witten invariants, from: "Proceedings of the International Congress of Mathematicians, Vol II (Berlin, 1998)" (1998) 493
,[22] The structure of pseudo-holomorphic subvarieties for a degenerate almost complex structure and symplectic form on $S^1\times B^3$, Geom. Topol. 2 (1998) 221
,[23] $L^2$ moduli spaces on 4–manifolds with cylindrical ends, Monographs in Geometry and Topology, I, International Press (1993)
,[24] $\mathrm{Gr}\Longrightarrow\mathrm{SW}$: from pseudo-holomorphic curves to Seiberg–Witten solutions, J. Differential Geom. 51 (1999) 203
,Cité par Sources :