Surface bundles over surfaces of small genus
Geometry & topology, Tome 6 (2002) no. 1, pp. 59-67.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct examples of non-isotrivial algebraic families of smooth complex projective curves over a curve of genus 2. This solves a problem from Kirby’s list of problems in low-dimensional topology. Namely, we show that 2 is the smallest possible base genus that can occur in a 4–manifold of non-zero signature which is an oriented fiber bundle over a Riemann surface. A refined version of the problem asks for the minimal base genus for fixed signature and fiber genus. Our constructions also provide new (asymptotic) upper bounds for these numbers.

DOI : 10.2140/gt.2002.6.59
Keywords: Surface bundles, 4–manifolds, algebraic surface

Bryan, Jim 1 ; Donagi, Ron 2

1 Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, V6T 1Z2, British Columbia, Canada
2
@article{GT_2002_6_1_a2,
     author = {Bryan, Jim and Donagi, Ron},
     title = {Surface bundles over surfaces of small genus},
     journal = {Geometry & topology},
     pages = {59--67},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.59},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.59/}
}
TY  - JOUR
AU  - Bryan, Jim
AU  - Donagi, Ron
TI  - Surface bundles over surfaces of small genus
JO  - Geometry & topology
PY  - 2002
SP  - 59
EP  - 67
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.59/
DO  - 10.2140/gt.2002.6.59
ID  - GT_2002_6_1_a2
ER  - 
%0 Journal Article
%A Bryan, Jim
%A Donagi, Ron
%T Surface bundles over surfaces of small genus
%J Geometry & topology
%D 2002
%P 59-67
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.59/
%R 10.2140/gt.2002.6.59
%F GT_2002_6_1_a2
Bryan, Jim; Donagi, Ron. Surface bundles over surfaces of small genus. Geometry & topology, Tome 6 (2002) no. 1, pp. 59-67. doi : 10.2140/gt.2002.6.59. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.59/

[1] M F Atiyah, The signature of fibre-bundles, from: "Global Analysis (Papers in Honor of K. Kodaira)", Univ. Tokyo Press (1969) 73

[2] J Bryan, R Donagi, A I Stipsicz, Surface bundles: some interesting examples, Turkish J. Math. 25 (2001) 61

[3] H Endo, M Korkmaz, D Kotschick, B Ozbagci, A Stipsicz, Commutators, Lefschetz fibrations and the signatures of surface bundles, Topology 41 (2002) 961

[4] H Endo, A construction of surface bundles over surfaces with non-zero signature, Osaka J. Math. 35 (1998) 915

[5] G González Díez, W J Harvey, On complete curves in moduli space I, II, Math. Proc. Cambridge Philos. Soc. 110 (1991) 461, 467

[6] J Harris, I Morrison, Moduli of curves, Graduate Texts in Mathematics 187, Springer (1998)

[7] F Hirzebruch, The signature of ramified coverings, from: "Global Analysis (Papers in Honor of K. Kodaira)", Univ. Tokyo Press (1969) 253

[8] , Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[9] K Kodaira, A certain type of irregular algebraic surfaces, J. Analyse Math. 19 (1967) 207

[10] D Kotschick, Signatures, monopoles and mapping class groups, Math. Res. Lett. 5 (1998) 227

[11] C Lebrun, Diffeomorphisms, symplectic forms and Kodaira fibrations, Geom. Topol. 4 (2000) 451

[12] I Smith, Lefschetz fibrations and the Hodge bundle, Geom. Topol. 3 (1999) 211

Cité par Sources :