Virtual Betti numbers of genus 2 bundles
Geometry & topology, Tome 6 (2002) no. 2, pp. 541-562.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if M is a surface bundle over S1 with fiber of genus 2, then for any integer n, M has a finite cover M˜ with b1(M˜) > n. A corollary is that M can be geometrized using only the “non-fiber" case of Thurston’s Geometrization Theorem for Haken manifolds.

DOI : 10.2140/gt.2002.6.541
Keywords: 3–manifold, geometrization, virtual Betti number, genus 2 surface bundle

Masters, Joseph D 1

1 Mathematics Department, Rice University, Houston, Texas 77005-1892, USA
@article{GT_2002_6_2_a2,
     author = {Masters, Joseph D},
     title = {Virtual {Betti} numbers of genus 2 bundles},
     journal = {Geometry & topology},
     pages = {541--562},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2002},
     doi = {10.2140/gt.2002.6.541},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.541/}
}
TY  - JOUR
AU  - Masters, Joseph D
TI  - Virtual Betti numbers of genus 2 bundles
JO  - Geometry & topology
PY  - 2002
SP  - 541
EP  - 562
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.541/
DO  - 10.2140/gt.2002.6.541
ID  - GT_2002_6_2_a2
ER  - 
%0 Journal Article
%A Masters, Joseph D
%T Virtual Betti numbers of genus 2 bundles
%J Geometry & topology
%D 2002
%P 541-562
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.541/
%R 10.2140/gt.2002.6.541
%F GT_2002_6_2_a2
Masters, Joseph D. Virtual Betti numbers of genus 2 bundles. Geometry & topology, Tome 6 (2002) no. 2, pp. 541-562. doi : 10.2140/gt.2002.6.541. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.541/

[1] M D Baker, Covers of Dehn fillings on once-punctured torus bundles, Proc. Amer. Math. Soc. 105 (1989) 747

[2] M D Baker, Covers of Dehn fillings on once-punctured torus bundles II, Proc. Amer. Math. Soc. 110 (1990) 1099

[3] D Gabai, On 3–manifolds finitely covered by surface bundles, from: "Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 112, Cambridge Univ. Press (1986) 145

[4] S P Humphries, Generators for the mapping class group, from: "Topology of low-dimensional manifolds (Proc. Second Sussex Conf., Chelwood Gate, 1977)", Lecture Notes in Math. 722, Springer (1979) 44

[5] T Kanenobu, The augmentation subgroup of a pretzel link, Math. Sem. Notes Kobe Univ. 7 (1979) 363

[6] J D Masters, Virtual homology of surgered torus bundles, Pacific J. Math. 195 (2000) 205

[7] W D Neumann, A W Reid, Arithmetic of hyperbolic manifolds, from: "Topology '90 (Columbus, OH, 1990)", Ohio State Univ. Math. Res. Inst. Publ. 1, de Gruyter (1992) 273

[8] J P Otal, Thurston's hyperbolization of Haken manifolds, from: "Surveys in differential geometry, Vol III (Cambridge, MA, 1996)", Int. Press, Boston (1998) 77

[9] A W Reid, Arithmeticity of knot complements, J. London Math. Soc. $(2)$ 43 (1991) 171

[10] A W Reid, Isospectrality and commensurability of arithmetic hyperbolic 2- and 3–manifolds, Duke Math. J. 65 (1992) 215

[11] R F Riley, Parabolic representations and symmetries of the knot $9_ {32}$, from: "Computers in geometry and topology (Chicago, IL, 1986)", Lecture Notes in Pure and Appl. Math. 114, Dekker (1989) 297

[12] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)

[13] F Waldhausen, On irreducible 3–manifolds which are sufficiently large, Ann. of Math. $(2)$ 87 (1968) 56

Cité par Sources :