Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The Jones–Witten theory gives rise to representations of the (extended) mapping class group of any closed surface indexed by a semi-simple Lie group and a level . In the case these representations (denoted ) have a particularly simple description in terms of the Kauffman skein modules with parameter a primitive th root of unity (). In each of these representations (as well as the general case), Dehn twists act as transformations of finite order, so none represents the mapping class group faithfully. However, taken together, the quantum representations are faithful on non-central elements of . (Note that has non-trivial center only if is a sphere with or punctures, a torus with or punctures, or the closed surface of genus .) Specifically, for a non-central there is an such that if and is a primitive th root of unity then acts projectively nontrivially on . Jones’ original representation of the braid groups , sometimes called the generic –analog––representation, is not known to be faithful. However, we show that any braid admits a cabling so that , .
Freedman, Michael H 1 ; Walker, Kevin 1 ; Wang, Zhenghan 2
@article{GT_2002_6_2_a1, author = {Freedman, Michael H and Walker, Kevin and Wang, Zhenghan}, title = {Quantum {SU(2)} faithfully detects mapping class groups modulo center}, journal = {Geometry & topology}, pages = {523--539}, publisher = {mathdoc}, volume = {6}, number = {2}, year = {2002}, doi = {10.2140/gt.2002.6.523}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.523/} }
TY - JOUR AU - Freedman, Michael H AU - Walker, Kevin AU - Wang, Zhenghan TI - Quantum SU(2) faithfully detects mapping class groups modulo center JO - Geometry & topology PY - 2002 SP - 523 EP - 539 VL - 6 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.523/ DO - 10.2140/gt.2002.6.523 ID - GT_2002_6_2_a1 ER -
%0 Journal Article %A Freedman, Michael H %A Walker, Kevin %A Wang, Zhenghan %T Quantum SU(2) faithfully detects mapping class groups modulo center %J Geometry & topology %D 2002 %P 523-539 %V 6 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.523/ %R 10.2140/gt.2002.6.523 %F GT_2002_6_2_a1
Freedman, Michael H; Walker, Kevin; Wang, Zhenghan. Quantum SU(2) faithfully detects mapping class groups modulo center. Geometry & topology, Tome 6 (2002) no. 2, pp. 523-539. doi : 10.2140/gt.2002.6.523. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.523/
[1] Asymptotic faithfulness of the quantum $\mathrm{SU}(n)$ representations of the mapping class groups, Ann. of Math. $(2)$ 163 (2006) 347
,[2] On framings of 3–manifolds, Topology 29 (1990) 1
,[3] Braid groups are linear, J. Amer. Math. Soc. 14 (2001) 471
,[4] The mapping class group of a genus two surface is linear, Algebr. Geom. Topol. 1 (2001) 699
, ,[5] Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883
, , , ,[6] On the residual finiteness of certain mapping class groups, J. London Math. Soc. $(2)$ 9 (1974/75) 160
,[7] A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980) 221
, ,[8] Mapping class groups, online notes at Michigan State University
,[9] Hecke algebra representations of braid groups and link polynomials, Ann. of Math. $(2)$ 126 (1987) 335
,[10] Kontaktprobleme der Konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.–Phys. Kl. 88 (1936) 141
,[11] Temperley–Lieb recoupling theory and invariants of 3–manifolds, Annals of Mathematics Studies 134, Princeton University Press (1994)
, ,[12] Low-dimensional homology groups of mapping class groups: a survey, Turkish J. Math. 26 (2002) 101
,[13] A finite set of generators for the homeotopy group of a 2–manifold, Proc. Cambridge Philos. Soc. 60 (1964) 769
,[14] Quantum invariants of knots and 3–manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter Co. (1994)
,[15] A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983) 157
,[16] On Witten's 3–manifold invariants, preprint (1991)
,[17] Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351
,Cité par Sources :