Quantum SU(2) faithfully detects mapping class groups modulo center
Geometry & topology, Tome 6 (2002) no. 2, pp. 523-539.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The Jones–Witten theory gives rise to representations of the (extended) mapping class group of any closed surface Y indexed by a semi-simple Lie group G and a level k. In the case G = SU(2) these representations (denoted V A(Y )) have a particularly simple description in terms of the Kauffman skein modules with parameter A a primitive 4rth root of unity (r = k + 2). In each of these representations (as well as the general G case), Dehn twists act as transformations of finite order, so none represents the mapping class group (Y ) faithfully. However, taken together, the quantum SU(2) representations are faithful on non-central elements of (Y ). (Note that (Y ) has non-trivial center only if Y is a sphere with 0,1, or 2 punctures, a torus with 0,1, or 2 punctures, or the closed surface of genus = 2.) Specifically, for a non-central h (Y ) there is an r0(h) such that if r r0(h) and A is a primitive 4rth root of unity then h acts projectively nontrivially on V A(Y ). Jones’ original representation ρn of the braid groups Bn, sometimes called the generic q–analog–SU(2)–representation, is not known to be faithful. However, we show that any braid hid Bn admits a cabling c = c1,,cn so that ρN(c(h))id, N = c1 + + cn.

DOI : 10.2140/gt.2002.6.523
Keywords: quantum invariants, Jones–Witten theory, mapping class groups

Freedman, Michael H 1 ; Walker, Kevin 1 ; Wang, Zhenghan 2

1 Microsoft Research, Redmond, Washington 98052, USA
2 Department of Mathematics, Indiana University, Bloomington, Indiana 47045, USA
@article{GT_2002_6_2_a1,
     author = {Freedman, Michael H and Walker, Kevin and Wang, Zhenghan},
     title = {Quantum {SU(2)} faithfully detects mapping class groups modulo center},
     journal = {Geometry & topology},
     pages = {523--539},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {2002},
     doi = {10.2140/gt.2002.6.523},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.523/}
}
TY  - JOUR
AU  - Freedman, Michael H
AU  - Walker, Kevin
AU  - Wang, Zhenghan
TI  - Quantum SU(2) faithfully detects mapping class groups modulo center
JO  - Geometry & topology
PY  - 2002
SP  - 523
EP  - 539
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.523/
DO  - 10.2140/gt.2002.6.523
ID  - GT_2002_6_2_a1
ER  - 
%0 Journal Article
%A Freedman, Michael H
%A Walker, Kevin
%A Wang, Zhenghan
%T Quantum SU(2) faithfully detects mapping class groups modulo center
%J Geometry & topology
%D 2002
%P 523-539
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.523/
%R 10.2140/gt.2002.6.523
%F GT_2002_6_2_a1
Freedman, Michael H; Walker, Kevin; Wang, Zhenghan. Quantum SU(2) faithfully detects mapping class groups modulo center. Geometry & topology, Tome 6 (2002) no. 2, pp. 523-539. doi : 10.2140/gt.2002.6.523. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.523/

[1] J E Andersen, Asymptotic faithfulness of the quantum $\mathrm{SU}(n)$ representations of the mapping class groups, Ann. of Math. $(2)$ 163 (2006) 347

[2] M Atiyah, On framings of 3–manifolds, Topology 29 (1990) 1

[3] S J Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001) 471

[4] S J Bigelow, R D Budney, The mapping class group of a genus two surface is linear, Algebr. Geom. Topol. 1 (2001) 699

[5] C Blanchet, N Habegger, G Masbaum, P Vogel, Topological quantum field theories derived from the Kauffman bracket, Topology 34 (1995) 883

[6] E K Grossman, On the residual finiteness of certain mapping class groups, J. London Math. Soc. $(2)$ 9 (1974/75) 160

[7] A Hatcher, W Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980) 221

[8] N Ivanov, Mapping class groups, online notes at Michigan State University

[9] V F R Jones, Hecke algebra representations of braid groups and link polynomials, Ann. of Math. $(2)$ 126 (1987) 335

[10] P Köerbe, Kontaktprobleme der Konformen Abbildung, Ber. Sächs. Akad. Wiss. Leipzig, Math.–Phys. Kl. 88 (1936) 141

[11] L H Kauffman, S L Lins, Temperley–Lieb recoupling theory and invariants of 3–manifolds, Annals of Mathematics Studies 134, Princeton University Press (1994)

[12] M Korkmaz, Low-dimensional homology groups of mapping class groups: a survey, Turkish J. Math. 26 (2002) 101

[13] W B R Lickorish, A finite set of generators for the homeotopy group of a 2–manifold, Proc. Cambridge Philos. Soc. 60 (1964) 769

[14] V G Turaev, Quantum invariants of knots and 3–manifolds, de Gruyter Studies in Mathematics 18, Walter de Gruyter Co. (1994)

[15] B Wajnryb, A simple presentation for the mapping class group of an orientable surface, Israel J. Math. 45 (1983) 157

[16] K Walker, On Witten's 3–manifold invariants, preprint (1991)

[17] E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351

Cité par Sources :