On the cut number of a 3–manifold
Geometry & topology, Tome 6 (2002) no. 1, pp. 409-424.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The question was raised as to whether the cut number of a 3–manifold X is bounded from below by 1 3β1(X). We show that the answer to this question is “no.” For each m 1, we construct explicit examples of closed 3–manifolds X with β1(X) = m and cut number 1. That is, π1(X) cannot map onto any non-abelian free group. Moreover, we show that these examples can be assumed to be hyperbolic.

DOI : 10.2140/gt.2002.6.409
Keywords: 3–manifold, fundamental group, corank, Alexander module, virtual betti number, free group

Harvey, Shelly L 1

1 Department of Mathematics, University of California at San Diego, La Jolla, California 92093-0112, USA
@article{GT_2002_6_1_a14,
     author = {Harvey, Shelly L},
     title = {On the cut number of a 3{\textendash}manifold},
     journal = {Geometry & topology},
     pages = {409--424},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.409},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.409/}
}
TY  - JOUR
AU  - Harvey, Shelly L
TI  - On the cut number of a 3–manifold
JO  - Geometry & topology
PY  - 2002
SP  - 409
EP  - 424
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.409/
DO  - 10.2140/gt.2002.6.409
ID  - GT_2002_6_1_a14
ER  - 
%0 Journal Article
%A Harvey, Shelly L
%T On the cut number of a 3–manifold
%J Geometry & topology
%D 2002
%P 409-424
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.409/
%R 10.2140/gt.2002.6.409
%F GT_2002_6_1_a14
Harvey, Shelly L. On the cut number of a 3–manifold. Geometry & topology, Tome 6 (2002) no. 1, pp. 409-424. doi : 10.2140/gt.2002.6.409. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.409/

[1] T D Cochran, P Melvin, Quantum cyclotomic orders of 3–manifolds, Topology 40 (2001) 95

[2] P Gilmer, T Kerler, Cut numbers of 3–manifolds via quantum orders in $\mathbb{Z}[\zeta_5]$, preprint

[3] J Howie, Free subgroups in groups of small deficiency, J. Group Theory 1 (1998) 95

[4] A Kawauchi, A survey of knot theory, Birkhäuser Verlag (1996)

[5] T Kerler, Homology TQFT's and the Alexander–Reidemeister invariant of 3–manifolds via Hopf algebras and skein theory, Canad. J. Math. 55 (2003) 766

[6] C J Leininger, A W Reid, The co-rank conjecture for 3–manifold groups, Algebr. Geom. Topol. 2 (2002) 37

[7] D Ruberman, Seifert surfaces of knots in $S^4$, Pacific J. Math. 145 (1990) 97

[8] A S Sikora, Cut numbers of 3–manifolds, Trans. Amer. Math. Soc. 357 (2005) 2007

[9] J Stallings, Homology and central series of groups, J. Algebra 2 (1965) 170

[10] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 59 (1986)

Cité par Sources :