Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove the long-standing Montesinos conjecture that any closed oriented PL 4–manifold is a simple covering of branched over a locally flat surface (cf [Trans. Amer. Math. Soc. 245 (1978) 453–467]). In fact, we show how to eliminate all the node singularities of the branching set of any simple 4–fold branched covering arising from the representation theorem given in [Topology 34 (1995) 497–508]. Namely, we construct a suitable cobordism between the 5–fold stabilization of such a covering (obtained by adding a fifth trivial sheet) and a new 5–fold covering whose branching set is locally flat. It is still an open question whether the fifth sheet is really needed or not.
Iori, Massimiliano 1 ; Piergallini, Riccardo 1
@article{GT_2002_6_1_a12, author = {Iori, Massimiliano and Piergallini, Riccardo}, title = {4{\textendash}manifolds as covers of the 4{\textendash}sphere branched over non-singular surfaces}, journal = {Geometry & topology}, pages = {393--401}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2002}, doi = {10.2140/gt.2002.6.393}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.393/} }
TY - JOUR AU - Iori, Massimiliano AU - Piergallini, Riccardo TI - 4–manifolds as covers of the 4–sphere branched over non-singular surfaces JO - Geometry & topology PY - 2002 SP - 393 EP - 401 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.393/ DO - 10.2140/gt.2002.6.393 ID - GT_2002_6_1_a12 ER -
%0 Journal Article %A Iori, Massimiliano %A Piergallini, Riccardo %T 4–manifolds as covers of the 4–sphere branched over non-singular surfaces %J Geometry & topology %D 2002 %P 393-401 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.393/ %R 10.2140/gt.2002.6.393 %F GT_2002_6_1_a12
Iori, Massimiliano; Piergallini, Riccardo. 4–manifolds as covers of the 4–sphere branched over non-singular surfaces. Geometry & topology, Tome 6 (2002) no. 1, pp. 393-401. doi : 10.2140/gt.2002.6.393. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.393/
[1] Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920) 370
,[2] The degree and branch set of a branced covering, Invent. Math. 45 (1978) 213
, ,[3] Covering spaces with singularities, from: "A symposium in honor of S. Lefschetz", Princeton University Press (1957) 243
,[4] Every closed orientable 3–manifold is a 3–fold branched covering space of $S^{3}$, Bull. Amer. Math. Soc. 80 (1974) 1243
,[5] Lifting surgeries to branched covering spaces, Trans. Amer. Math. Soc. 259 (1980) 157
, ,[6] Über offene Abbildungen auf die 3–Sphäre, Math. Z. 140 (1974) 203
,[7] Proposals for unknotted surfaces in four-spaces, Osaka J. Math. 16 (1979) 233
, ,[8] Nonorientable surfaces in 4–space, Osaka J. Math. 26 (1989) 367
,[9] , Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35
[10] Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969) 143
,[11] A representation of closed orientable 3–manifolds as 3–fold branched coverings of $S^{3}$, Bull. Amer. Math. Soc. 80 (1974) 845
,[12] 4–manifolds, 3–fold covering spaces and ribbons, Trans. Amer. Math. Soc. 245 (1978) 453
,[13] Four-manifolds as 4–fold branched covers of $S^4$, Topology 34 (1995) 497
,[14] The signature of a branched covering, Mat. Zametki 36 (1984) 549
,Cité par Sources :