4–manifolds as covers of the 4–sphere branched over non-singular surfaces
Geometry & topology, Tome 6 (2002) no. 1, pp. 393-401.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove the long-standing Montesinos conjecture that any closed oriented PL 4–manifold M is a simple covering of S4 branched over a locally flat surface (cf [Trans. Amer. Math. Soc. 245 (1978) 453–467]). In fact, we show how to eliminate all the node singularities of the branching set of any simple 4–fold branched covering M S4 arising from the representation theorem given in [Topology 34 (1995) 497–508]. Namely, we construct a suitable cobordism between the 5–fold stabilization of such a covering (obtained by adding a fifth trivial sheet) and a new 5–fold covering M S4 whose branching set is locally flat. It is still an open question whether the fifth sheet is really needed or not.

DOI : 10.2140/gt.2002.6.393
Keywords: 4–manifolds, branched coverings, locally flat branching surfaces

Iori, Massimiliano 1 ; Piergallini, Riccardo 1

1 Dipartimento di Matematica e Informatica, Università di Camerino, Italy
@article{GT_2002_6_1_a12,
     author = {Iori, Massimiliano and Piergallini, Riccardo},
     title = {4{\textendash}manifolds as covers of the 4{\textendash}sphere branched over non-singular surfaces},
     journal = {Geometry & topology},
     pages = {393--401},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.393},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.393/}
}
TY  - JOUR
AU  - Iori, Massimiliano
AU  - Piergallini, Riccardo
TI  - 4–manifolds as covers of the 4–sphere branched over non-singular surfaces
JO  - Geometry & topology
PY  - 2002
SP  - 393
EP  - 401
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.393/
DO  - 10.2140/gt.2002.6.393
ID  - GT_2002_6_1_a12
ER  - 
%0 Journal Article
%A Iori, Massimiliano
%A Piergallini, Riccardo
%T 4–manifolds as covers of the 4–sphere branched over non-singular surfaces
%J Geometry & topology
%D 2002
%P 393-401
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.393/
%R 10.2140/gt.2002.6.393
%F GT_2002_6_1_a12
Iori, Massimiliano; Piergallini, Riccardo. 4–manifolds as covers of the 4–sphere branched over non-singular surfaces. Geometry & topology, Tome 6 (2002) no. 1, pp. 393-401. doi : 10.2140/gt.2002.6.393. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.393/

[1] J W Alexander, Note on Riemann spaces, Bull. Amer. Math. Soc. 26 (1920) 370

[2] I Berstein, A L Edmonds, The degree and branch set of a branced covering, Invent. Math. 45 (1978) 213

[3] R H Fox, Covering spaces with singularities, from: "A symposium in honor of S. Lefschetz", Princeton University Press (1957) 243

[4] H M Hilden, Every closed orientable 3–manifold is a 3–fold branched covering space of $S^{3}$, Bull. Amer. Math. Soc. 80 (1974) 1243

[5] H M Hilden, J M Montesinos, Lifting surgeries to branched covering spaces, Trans. Amer. Math. Soc. 259 (1980) 157

[6] U Hirsch, Über offene Abbildungen auf die 3–Sphäre, Math. Z. 140 (1974) 203

[7] F Hosokawa, A Kawauchi, Proposals for unknotted surfaces in four-spaces, Osaka J. Math. 16 (1979) 233

[8] S Kamada, Nonorientable surfaces in 4–space, Osaka J. Math. 26 (1989) 367

[9] , Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[10] W S Massey, Proof of a conjecture of Whitney, Pacific J. Math. 31 (1969) 143

[11] J M Montesinos, A representation of closed orientable 3–manifolds as 3–fold branched coverings of $S^{3}$, Bull. Amer. Math. Soc. 80 (1974) 845

[12] J M Montesinos, 4–manifolds, 3–fold covering spaces and ribbons, Trans. Amer. Math. Soc. 245 (1978) 453

[13] R Piergallini, Four-manifolds as 4–fold branched covers of $S^4$, Topology 34 (1995) 497

[14] O Y Viro, The signature of a branched covering, Mat. Zametki 36 (1984) 549

Cité par Sources :