Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a Delaunay decomposition of a compact hyperbolic surface, one may record the topological data of the decomposition, together with the intersection angles between the “empty disks” circumscribing the regions of the decomposition. The main result of this paper is a characterization of when a given topological decomposition and angle assignment can be realized as the data of an actual Delaunay decomposition of a hyperbolic surface.
Leibon, Gregory 1
@article{GT_2002_6_1_a11, author = {Leibon, Gregory}, title = {Characterizing the {Delaunay} decompositions of compact hyperbolic surfaces}, journal = {Geometry & topology}, pages = {361--391}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2002}, doi = {10.2140/gt.2002.6.361}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.361/} }
TY - JOUR AU - Leibon, Gregory TI - Characterizing the Delaunay decompositions of compact hyperbolic surfaces JO - Geometry & topology PY - 2002 SP - 361 EP - 391 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.361/ DO - 10.2140/gt.2002.6.361 ID - GT_2002_6_1_a11 ER -
Leibon, Gregory. Characterizing the Delaunay decompositions of compact hyperbolic surfaces. Geometry & topology, Tome 6 (2002) no. 1, pp. 361-391. doi : 10.2140/gt.2002.6.361. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.361/
[1] Singular Euclidean structures on surfaces, J. London Math. Soc. $(2)$ 44 (1991) 553
,[2] Kreispackungen und Triangulierungen, Enseign. Math. $(2)$ 38 (1992) 201
,[3] Linear programming and extensions, Princeton University Press (1963)
,[4] Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991) 655
,[5] Sur la sphere vide, Proc. Int. Congr. Mth. 1 (1928) 695
,[6] Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988) 67
, ,[7] Euclidean and non–Euclidean geometries, W. H. Freeman and Company (1993)
,[8] The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157
,[9] Rigidity of infinite disk patterns, Ann. of Math. $(2)$ 149 (1999) 1
,[10] Disk patterns and 3–dimensional convex hyperbolic polyhedra, in preparation
,[11] Random Delaunay triangulations and metric uniformization, Int. Math. Res. Not. (2002) 1331
,[12] Random Delaunay triangulations, the Thurston–Andreev Theorem and metric uniformization, PhD thesis, UC San Diego (1999)
,[13] The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299
,[14] Combinatorial optimization in geometry, Adv. in Appl. Math. 31 (2003) 242
,[15] Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. $(2)$ 139 (1994) 553
,[16] Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)
,[17] Les surfaces euclidiennes à singularités coniques, Enseign. Math. $(2)$ 32 (1986) 79
,[18] Delaunay partitions, Topology 36 (1997) 1
,Cité par Sources :