Characterizing the Delaunay decompositions of compact hyperbolic surfaces
Geometry & topology, Tome 6 (2002) no. 1, pp. 361-391.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a Delaunay decomposition of a compact hyperbolic surface, one may record the topological data of the decomposition, together with the intersection angles between the “empty disks” circumscribing the regions of the decomposition. The main result of this paper is a characterization of when a given topological decomposition and angle assignment can be realized as the data of an actual Delaunay decomposition of a hyperbolic surface.

DOI : 10.2140/gt.2002.6.361
Keywords: Delaunay triangulation, hyperbolic polyhedra, disk pattern

Leibon, Gregory 1

1 Hinman Box 6188, Dartmouth College, Hanover, New Hampshire 03755, USA
@article{GT_2002_6_1_a11,
     author = {Leibon, Gregory},
     title = {Characterizing the {Delaunay} decompositions of compact hyperbolic surfaces},
     journal = {Geometry & topology},
     pages = {361--391},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.361},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.361/}
}
TY  - JOUR
AU  - Leibon, Gregory
TI  - Characterizing the Delaunay decompositions of compact hyperbolic surfaces
JO  - Geometry & topology
PY  - 2002
SP  - 361
EP  - 391
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.361/
DO  - 10.2140/gt.2002.6.361
ID  - GT_2002_6_1_a11
ER  - 
%0 Journal Article
%A Leibon, Gregory
%T Characterizing the Delaunay decompositions of compact hyperbolic surfaces
%J Geometry & topology
%D 2002
%P 361-391
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.361/
%R 10.2140/gt.2002.6.361
%F GT_2002_6_1_a11
Leibon, Gregory. Characterizing the Delaunay decompositions of compact hyperbolic surfaces. Geometry & topology, Tome 6 (2002) no. 1, pp. 361-391. doi : 10.2140/gt.2002.6.361. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.361/

[1] B H Bowditch, Singular Euclidean structures on surfaces, J. London Math. Soc. $(2)$ 44 (1991) 553

[2] W Brägger, Kreispackungen und Triangulierungen, Enseign. Math. $(2)$ 38 (1992) 201

[3] G B Dantzig, Linear programming and extensions, Princeton University Press (1963)

[4] Y Colin De Verdière, Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991) 655

[5] B Delaunay, Sur la sphere vide, Proc. Int. Congr. Mth. 1 (1928) 695

[6] D B A Epstein, R C Penner, Euclidean decompositions of noncompact hyperbolic manifolds, J. Differential Geom. 27 (1988) 67

[7] M J Greenberg, Euclidean and non–Euclidean geometries, W. H. Freeman and Company (1993)

[8] J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157

[9] Z X He, Rigidity of infinite disk patterns, Ann. of Math. $(2)$ 149 (1999) 1

[10] Z X He, Disk patterns and 3–dimensional convex hyperbolic polyhedra, in preparation

[11] G Leibon, Random Delaunay triangulations and metric uniformization, Int. Math. Res. Not. (2002) 1331

[12] G Leibon, Random Delaunay triangulations, the Thurston–Andreev Theorem and metric uniformization, PhD thesis, UC San Diego (1999)

[13] R C Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299

[14] I Rivin, Combinatorial optimization in geometry, Adv. in Appl. Math. 31 (2003) 242

[15] I Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. $(2)$ 139 (1994) 553

[16] W P Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)

[17] M Troyanov, Les surfaces euclidiennes à singularités coniques, Enseign. Math. $(2)$ 32 (1986) 79

[18] W A Veech, Delaunay partitions, Topology 36 (1997) 1

Cité par Sources :