Burnside obstructions to the Montesinos–Nakanishi 3–move conjecture
Geometry & topology, Tome 6 (2002) no. 1, pp. 355-360.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Yasutaka Nakanishi asked in 1981 whether a 3–move is an unknotting operation. In Kirby’s problem list, this question is called the Montesinos–Nakanishi 3–move conjecture. We define the nth Burnside group of a link and use the 3rd Burnside group to answer Nakanishi’s question; ie, we show that some links cannot be reduced to trivial links by 3–moves.

DOI : 10.2140/gt.2002.6.355
Keywords: knot, link, tangle, 3–move, rational move, braid, Fox coloring, Burnside group, Borromean rings, Montesinos–Nakanishi conjecture, branched cover, core group, lower central series, associated graded Lie ring, skein module

Dabkowski, Mieczysław K 1 ; Przytycki, Józef H 1

1 Department of Mathematics, The George Washington University, Washington, District of Columbia 20052, USA
@article{GT_2002_6_1_a10,
     author = {Dabkowski, Mieczys{\l}aw K and Przytycki, J\'ozef H},
     title = {Burnside obstructions to the {Montesinos{\textendash}Nakanishi} 3{\textendash}move conjecture},
     journal = {Geometry & topology},
     pages = {355--360},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2002},
     doi = {10.2140/gt.2002.6.355},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.355/}
}
TY  - JOUR
AU  - Dabkowski, Mieczysław K
AU  - Przytycki, Józef H
TI  - Burnside obstructions to the Montesinos–Nakanishi 3–move conjecture
JO  - Geometry & topology
PY  - 2002
SP  - 355
EP  - 360
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.355/
DO  - 10.2140/gt.2002.6.355
ID  - GT_2002_6_1_a10
ER  - 
%0 Journal Article
%A Dabkowski, Mieczysław K
%A Przytycki, Józef H
%T Burnside obstructions to the Montesinos–Nakanishi 3–move conjecture
%J Geometry & topology
%D 2002
%P 355-360
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.355/
%R 10.2140/gt.2002.6.355
%F GT_2002_6_1_a10
Dabkowski, Mieczysław K; Przytycki, Józef H. Burnside obstructions to the Montesinos–Nakanishi 3–move conjecture. Geometry & topology, Tome 6 (2002) no. 1, pp. 355-360. doi : 10.2140/gt.2002.6.355. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.355/

[1] W Burnside, On an unsettled question in the theory of discontinuous groups, Quart. J. Pure Appl. Math. 33 (1902) 230

[2] R Fenn, C Rourke, Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992) 343

[3] D Joyce, A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982) 37

[4] R Kirby, Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[5] M Newman, Presentations for Burnside groups

[6] J H Przytycki, $t_k$ moves on links, from: "Braids (Santa Cruz, CA, 1986)", Contemp. Math. 78, Amer. Math. Soc. (1988) 615

[7] J H Przytycki, Skein modules of 3–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91

[8] J H Przytycki, 3–coloring and other elementary invariants of knots, from: "Knot theory (Warsaw, 1995)", Banach Center Publ. 42, Polish Acad. Sci. (1998) 275

Cité par Sources :