Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Yasutaka Nakanishi asked in 1981 whether a 3–move is an unknotting operation. In Kirby’s problem list, this question is called the Montesinos–Nakanishi 3–move conjecture. We define the th Burnside group of a link and use the 3rd Burnside group to answer Nakanishi’s question; ie, we show that some links cannot be reduced to trivial links by 3–moves.
Dabkowski, Mieczysław K 1 ; Przytycki, Józef H 1
@article{GT_2002_6_1_a10, author = {Dabkowski, Mieczys{\l}aw K and Przytycki, J\'ozef H}, title = {Burnside obstructions to the {Montesinos{\textendash}Nakanishi} 3{\textendash}move conjecture}, journal = {Geometry & topology}, pages = {355--360}, publisher = {mathdoc}, volume = {6}, number = {1}, year = {2002}, doi = {10.2140/gt.2002.6.355}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.355/} }
TY - JOUR AU - Dabkowski, Mieczysław K AU - Przytycki, Józef H TI - Burnside obstructions to the Montesinos–Nakanishi 3–move conjecture JO - Geometry & topology PY - 2002 SP - 355 EP - 360 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.355/ DO - 10.2140/gt.2002.6.355 ID - GT_2002_6_1_a10 ER -
%0 Journal Article %A Dabkowski, Mieczysław K %A Przytycki, Józef H %T Burnside obstructions to the Montesinos–Nakanishi 3–move conjecture %J Geometry & topology %D 2002 %P 355-360 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.355/ %R 10.2140/gt.2002.6.355 %F GT_2002_6_1_a10
Dabkowski, Mieczysław K; Przytycki, Józef H. Burnside obstructions to the Montesinos–Nakanishi 3–move conjecture. Geometry & topology, Tome 6 (2002) no. 1, pp. 355-360. doi : 10.2140/gt.2002.6.355. http://geodesic.mathdoc.fr/articles/10.2140/gt.2002.6.355/
[1] On an unsettled question in the theory of discontinuous groups, Quart. J. Pure Appl. Math. 33 (1902) 230
,[2] Racks and links in codimension two, J. Knot Theory Ramifications 1 (1992) 343
, ,[3] A classifying invariant of knots, the knot quandle, J. Pure Appl. Algebra 23 (1982) 37
,[4] Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35
,[5] Presentations for Burnside groups
,[6] $t_k$ moves on links, from: "Braids (Santa Cruz, CA, 1986)", Contemp. Math. 78, Amer. Math. Soc. (1988) 615
,[7] Skein modules of 3–manifolds, Bull. Polish Acad. Sci. Math. 39 (1991) 91
,[8] 3–coloring and other elementary invariants of knots, from: "Knot theory (Warsaw, 1995)", Banach Center Publ. 42, Polish Acad. Sci. (1998) 275
,Cité par Sources :